Locally compact spaces of measures
HTML articles powered by AMS MathViewer
- by Norman Y. Luther
- Proc. Amer. Math. Soc. 25 (1970), 541-547
- DOI: https://doi.org/10.1090/S0002-9939-1970-0280668-4
- PDF | Request permission
Abstract:
Under varying conditions on the topological space $X$, the spaces of $\sigma$-smooth, $\tau$-smooth, and tight measures on $X$, respectively, are each shown to be locally compact in the weak topology if, and only if, $X$ is compact.References
- Irving Glicksberg, The representation of functionals by integrals, Duke Math. J. 19 (1952), 253–261. MR 50168
- Edwin Hewitt, On two problems of Urysohn, Ann. of Math. (2) 47 (1946), 503–509. MR 17527, DOI 10.2307/1969089
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- J. L. Kelley and Isaac Namioka, Linear topological spaces, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. MR 0166578
- V. S. Varadarajan, Measures on topological spaces, Mat. Sb. (N.S.) 55 (97) (1961), 35–100 (Russian). MR 0148838
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 541-547
- MSC: Primary 28.30; Secondary 54.00
- DOI: https://doi.org/10.1090/S0002-9939-1970-0280668-4
- MathSciNet review: 0280668