A NOTE ON THE CARDINALITY OF THE MEDVEDEV LATTICE

RICHARD A. PLATEK

In [1] Rogers discusses the Medvedev lattice of mass problems and states that its cardinality is unknown. In this note we simply show

Theorem. The Medvedev lattice has 2^c members; in fact there is a set of pairwise incomparable elements of cardinality 2^c.

Proof. Let $\mathcal{A} \subseteq \mathcal{N}^N$ be a set of cardinality c of functions of incomparable Turing degree [2]. Let A be a family of subsets of \mathcal{A} of cardinality 2^c which are incomparable with respect to inclusion (such a family exists by identifying \mathcal{A} with the reals and letting A be the family of all Hamel bases—this observation is due to Nerode). Then distinct members of A have incomparable M-degree for suppose \mathcal{B}_1 and \mathcal{B}_2 are in A and are distinct and further suppose that there is a recursive operator Φ with $\Phi(\mathcal{B}_2) \subseteq \mathcal{B}_1$. Let $f \in \mathcal{B}_2 - \mathcal{B}_1$ (since \mathcal{B}_2 is not a subset of \mathcal{B}_1) then $\Phi(f) \neq f$ and both are in \mathcal{A} contradicting the fact that the elements of \mathcal{A} have incomparable Turing degree.

This result was also found independently by Elizabeth Jockusch and John Stillwell.

References

Cornell University, Ithaca, New York 14850

Received by the editors May 19, 1969.