SOME SEMIGROUPS ON A MANIFOLD WITH BOUNDARY

T. H. McH. HANSON

Abstract. In this paper, S is an abelian semigroup on an n-dimensional simply connected manifold with boundary whose interior is a dense, simply connected, connected Lie group. We also assume there is a vector semigroup V_k in S such that the interior of S misses the boundary of V_k, and such that $(S-GL_k)/V_k$ is a group. It is shown that if $k = n$, then S is isomorphic to V_k^n, and if $k = 1, 2,$ or $n-1$, then S is isomorphic to $V_{n-k} \times V_k$.

Introduction. In this paper we employ the language of topological semigroups, and that of transformation groups. The former may be found in [5], and the latter in [7]. Semigroup is to mean topological semigroup. If S is a semigroup with identity, 1, and N is a group in S with 1 in N, then N acts as a transformation semigroup on S by left multiplication, and any two distinct orbits of this action are disjoint. Thus, if M is a subset of S which is invariant under this action, we may form the orbit space M/N. Whenever we say that M/N is a group, we mean the operation $(Nm)(Nm') = N(mm')$ is well-defined, and makes M/N into a group (algebraically speaking).

We denote the multiplicative group of positive reals by P, and use P^r to designate the multiplicative semigroup of nonnegative reals. Referring to [2], for each positive integer k, we set

$$V_k = P \times P \times \cdots \times P \ (k\text{-copies}), \quad V_k^- = P^r \times P^r \times \cdots \times P^r \ (k\text{-copies})$$

and $L_k = V_k^- - V_k$.

We use e to denote the zero of V_k^r, and obtain information about V_k^r, V_k^r, and L_k from [2]; for example, L_k is a connected ideal in V_k^r.

In what follows, S is to be an abelian semigroup on an n-dimensional simply connected manifold with boundary such that the interior of S is a dense, connected, simply connected group, G. We do not assume S is compact. Since G is dense in S, the identity, 1, of G is the identity for S. We further assume that there is a $k < n+1$ such that $V_k^r \subseteq S, \ 1 \in V_k^r, \ G \cap L_k = \emptyset$, and $(S-GL_k)/V_k$ is a group. It will be shown that $S-GL_k = G$.

Received by the editors June 10, 1969.

AMS Subject Classifications. Primary 5480, 2205; Secondary 5478, 2240, 2250.

Key Words and Phrases. Simply connected manifold, boundary, vector semigroup, vector group, dimension, fundamental group, retract.

1 This work is a portion of the author's doctoral dissertation written under the direction of Professor J. G. Horne, at the University of Georgia.
Since \(G \) is the interior of \(S \), \(H(1) \) is a Lie group \([9]\). Since \(G \) is dense and open in \(S \), it is seen that \(G = H(1) \). Further, since \(S \) is abelian, \(\text{Bd}(S) = S - G \) is an ideal in \(S \). \(G \) is a connected, simply connected, \(n \)-dimensional Lie group, so \(G \) is isomorphic to the \(n \)-dimensional vector group \([4]\). If \(A \) is a subset of \(S \), \(A^* \) denotes the closure of \(A \).

It is a great pleasure to acknowledge the helpful comments of Professor A. D. Wallace.

Preliminary results. Suppose \(V \) is a vector group, and \(H \) is a subgroup of \(V \) such that \(V/H \) is also a vector group. If \(\pi : V \to V/H \) is the natural map, \(\pi \) is linear \([4]\), so \(H \) is a vector subspace of \(V \). This establishes

Lemma 1. If \(V \) is a vector group, and \(H \) is a subgroup such that \(V/H \) is also a vector group, then \(H \) is a vector subspace of \(V \).

Our first interesting result is

Theorem 1. \(G = S - GL_k \), and \(\text{Bd}(S) = GL_k \). Furthermore, \(\text{Bd}(S) \) is connected and is an \((n - 1)\)-manifold.

Proof. Since \(G \cap L_k = \emptyset \), and since \(\text{Bd}(S) \) is an ideal, \(G = S - \text{Bd}(S) \) \(\subseteq S - GL_k \). Since \(V_k \subset H(1) = G \), \(V_k \subseteq S - GL_k \). If \(t \in S - GL_k \), and if \(v \in V_k \), then \(vt \in S - GL_k \). For, if \(vt \in GL_k \), \(t \in (v^{-1}G)L_k = GL_k \). We then see that for every \(t \in S - GL_k \), \(V_k t \subset S - GL_k \). Since \((S - GL_k)/V_k \) is a group and \(1 \in V_k \subseteq G \subseteq S - GL_k \), it is seen from \([3]\) that \(S - GL_k \subset H(1) = G \). Therefore, \(G = S - GL_k \).

\(G = S - GL_k \), so, \(\text{Bd}(S) = S - G = GL_k \). As mentioned above, \(L_k \) is connected, so, since \(G \) is connected, \(\text{Bd}(S) = GL_k \) is connected. It then follows \([10]\) that \(\text{Bd}(S) \) is an \((n - 1)\)-manifold.

We now present

Theorem 2. \(G_e = S_e \), and \(G_e \) is a vector group of dimension not greater than \(n - k \). Furthermore, \(G_e \), the isotropy subgroup of \(G \) at \(e \) under left multiplication, is connected.

Proof. Since \(G \) is isomorphic to the \(n \)-dimensional vector group, and since \(V_k \) is a vector subgroup of \(G \), there is a vector group \(V_{n-k} \) in \(G \) such that \(V_{n-k} \times V_k \) is isomorphic to \(G \) under \((v, t) \to vt\). Thus, \(G = V_{n-k}V_k \), so \(GL_k = (V_{n-k}V_k)L_k = V_{n-k}(V_kL_k) \). But, \(L_k \) is an ideal in \(V_k \), so, since \(1 \in V_k \), \(V_kL_k \subset L_k \subset V_kL_k \). Thus, \(V_kL_k = L_k \), and \(GL_k = V_{n-k}L_k \). From this we see that \((v, t) \to vt\) maps \(V_{n-k} \times V_k \) homomorphically onto \(G \cup GL_k = S \).

Since \(e \) is the zero of \(V_k \), since \(G = V_{n-k}V_k \), and since \(S = V_{n-k}V_k \), we readily see that \(G_e = V_{n-k}e = S_e \). This is the first part of the theorem.
Now, \(e \) is an idempotent in \(S \), and there is a one-parameter semigroup in \(V_k \subset S \) which has \(e \) as its zero. Thus, \(Se = Ge \) is a deformation retract of \(S \). Hence, \(Ge \) is closed in \(S \), so it is locally compact. Also, since \(S \) is abelian, \(Ge \) is algebraically a group with identity \(e = 1e \). Therefore [1], \(Ge \) is a topological group. Furthermore, \(v \mapsto ve \) is a homomorphism from the locally compact, Lindelöf, Hausdorff topological group \(V_{n-k} \) onto \(Ge \). Hence, the map is open, and \(Ge \) is isomorphic to \((V_{n-k})/(V_{n-k})_e\), where \((V_{n-k})_e\) is the isotropy subgroup of \(V_{n-k} \) at \(e \). Since \((V_{n-k})_e\) is a closed subgroup of \(V_{n-k} \), \((V_{n-k})/(V_{n-k})_e\) is isomorphic to a product of a vector group \(V_p \) and a toral group \(T_q \), with \(p + q < n - k + 1 \) [4]. Then, \(Ge \cong (V_{n-k})/(V_{n-k})_e \cong V_p \times T_q \).

Letting \(\pi_1 \) denote the fundamental group functor, we have
\[
\pi_1(Se) = \pi_1(V_p \times T_q) = \pi_1(V_p) \oplus \pi_1(T_q)
\]
\[
= \pi_1(T_q) = \mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} \quad (q\text{-copies}).
\]

However, \(Ge = Se \) is a deformation retract of the simply connected space \(S \), so \(\pi_1(Se) = 0 \). Therefore, \(q = 0 \), and \(Ge \) is isomorphic to \(V_p \), \(p < n - k + 1 \). Hence, \(Ge = Se \) is a vector group of dimension not greater than \(n - k \).

\(G \) is a vector group, so \(G \) is a locally compact, Lindelöf, Hausdorff topological group. Further, \(g \mapsto ge \) is a homomorphism of \(G \) onto \(Ge \), so, as above, \(Ge \) is isomorphic to \(G/Ge \). Hence, \(Ge \) is a subgroup of the vector group \(G \) such that \(G/Ge \) is a vector group. Hence, by Lemma 1, \(Ge \) is a vector group, and therefore connected, which concludes the proof of the theorem.

We remark that the proof above can also be used to show that \((V_{n-k})_e\) is connected.

We now prove a theorem which leads to our characterization theorems. It is

Theorem 3. The following are equivalent:
\((i) \) \(S \) is isomorphic to \(V_{n-k} \times V_k^r \) under the map \((v, t) \mapsto vt\).
\((ii) \) \(v \mapsto ve \) is an isomorphism from \(V_{n-k} \) onto \(Ge \).
\((iii) \) \(\dim Ge = n - k \).

Proof. From the proof of Theorem 2, \((v, t) \mapsto vt\) is a homomorphism from \(V_{n-k} \times V_k^r \) onto \(S \), and an isomorphism from \(V_{n-k} \times V_k \) onto \(G \). Also, \(v \mapsto ve \) is an open homomorphism from \(V_{n-k} \) onto \(Ge \).

(i\(\implies \)) If \((v, t) \mapsto vt\) is an isomorphism, it follows that \(v \mapsto ve \) must be 1-1 from \(V_{n-k} \) onto \(Ge \). Thus, \(v \mapsto ve \) is an isomorphism from \(V_{n-k} \) onto \(Ge \).
(ii\Rightarrowiii) If $v\rightarrow ve$ is an iseomorphism, then V_{n-k} is homeomorphic to Ge, so $\dim Ge = \dim V_{n-k} = n - k$.

(iii\Rightarrowii) It is shown in the proof of Theorem 2 that $v\rightarrow ve$ is an open homomorphism from V_{n-k} onto Ge, and that Ge is iseomorphic to $(V_{n-k})/(V_{n-k})_e$. Thus, $n - k = \dim Ge = \dim [(V_{n-k})/(V_{n-k})_e]$. But, \[8\], $\dim [(V_{n-k})/(V_{n-k})_e] = \dim V_{n-k} - \dim (V_{n-k})_e = (n - k) - \dim (V_{n-k})_e$.

Then, $n - k = (n - k) - \dim (V_{n-k})_e$, so $\dim (V_{n-k})_e = 0$. Hence, $(V_{n-k})_e = \{1\}$, so $v\rightarrow ve$ is 1-1, and is thus an iseomorphism from V_{n-k} onto Ge.

(ii\Rightarrowi) We already know that $(v, t)\rightarrow vu$ is a homomorphism from $V_{n-k} \times V_k$ onto S. We now show that it is 1-1.

Suppose $v, v' \in V_{n-k}$ and $t, t' \in V_k$ such that $vt = v't'$. Then, since e is the zero for V_k, $ve = (vt)e = (v't')e = ve$. Thus, $v = v'$, because $s\rightarrow se$ is an iseomorphism from V_{n-k} onto Ge. Then, $t = v^{-1}(vt) = v^{-1}(v't') = v^{-1}v = t$. Hence, $(v, t) = (v', t')$, and our map is 1-1.

To show that our map is an iseomorphism, it is now sufficient to show that if $\{v_p\}$ and $\{t_p\}$ are nets in V_{n-k} and V_k respectively such that $v_p t_p \rightarrow vt$ for some $v \in V_{n-k}$ and $t \in V_k$, then $(v_p, t_p) \rightarrow (v, t)$. But, if $v_p t_p \rightarrow vt$, then $v_p e = (v_p t_p)e \rightarrow (vt)e = ve$. Since $s\rightarrow se$ is an iseomorphism, $v_p \rightarrow w$. V_{n-k} is a topological group, so $v_p^{-1} \rightarrow w^{-1}$, and $t_p = v_p^{-1}(v_p t_p) \rightarrow v^{-1}(vt) = t$. Hence, $(v_p, t_p) \rightarrow (v, t)$, and we have completed the proof of the theorem.

Principal results. We now give our characterizations of S. The first of these is

Theorem 4. If $k = n$, S is iseomorphic to V_k^-.

Proof. If $k = n$, V_k is an n-dimensional vector subgroup of G. Hence, $V_k = G$, so $S = G* = (V_k)^* = V_k^- [2]$, and we see that $S = V_k^- = V_k^-$.

Theorem 5. If $k = n - 1$, and e is not a zero for S, then S is iseomorphic to $V_1 \times V_{n-1}^-$.

Proof. $Ge = V_1 e$, so $\dim Ge \leq \dim V_1 = 1$. If $\dim Ge = 0$, then, since Ge is connected and nonempty, $Ge = \{e\}$. But, by Theorem 2, $Se = Ge = \{e\}$, so e is a zero for S. This contradiction implies that $\dim Ge = 1$, which, by Theorem 3, yields the result.

Theorem 6. If $k = 1$, S is iseomorphic to $V_{n-1} \times V_1^-$.

Proof. S is an n-manifold with boundary, and, by Theorem 1, $\text{Bd}(S)$ is an $(n - 1)$-manifold, and $\text{Bd}(S) = GL_1$. Since $L_1 = \{e\}$, $GL_1 = Ge$. Thus, $\dim Ge = n - 1$, and the result follows from Theorem 3.

The last characterization we have obtained to date is
Theorem 7. If $k = 2$, S is isomorphic to $V_{n-2} \times V_2$.

Proof. From Theorem 1, $\text{Bd}(S) = GL_2$, and from the proof of Theorem 2, $G = V_{n-2} V_2$, and $S = V_{n-2} V_2$. From [2], we may find idempotents e_1 and e_2 in L_2 such that $e_1 \neq e_2$, $e_1 \neq e \neq e_2$, $e = e_1 e_2$, and $L_2 = V_2 e_1 \cup V_2 e_2$. We then see that

$$\text{Bd}(S) = GL_2 = G(V_{n-2} e_1 \cup V_{n-2} e_2) \subset GV_{n-2} e_1 \cup GV_{n-2} e_2$$

$$\subset GL_2 \cup GL_2 = GL_2 = \text{Bd}(S).$$

Therefore, $\text{Bd}(S) = GV_{n-2} e_1 \cup GV_{n-2} e_2$. We have, for $i = 1, 2$, $GV_{n-2} e_i = (V_{n-2} V_2) e_i = (V_{n-2} V_2) e_i = S e_i$. Thus, $\text{Bd}(S) = S e_1 \cup S e_2$. Since each of e_1 and e_2 is an idempotent in S, each of $S e_1$ and $S e_2$ is a retract of S and hence closed in S, and thus in $\text{Bd}(S)$.

For $i = 1, 2$, we see that $S e_i \subset (G e_i)^*$, because $G^* = S$. But, $G \subset S$, so $S e_i \subset S e_i$. Since $S e_i$ is closed, it follows that $(G e_i)^* = S e_i$. Now, $S e_i = (V_{n-2} V_2) e_i = V_{n-2} (V_2 e_i)$. However, [2] gives $V_2 e_i = V_{n-2} e_i \cup \{e\}$, so we have $S e_i = V_{n-2} (V_2 e_i \cup \{e\}) \subset V_{n-2} V_2 e_i \cup V_{n-2} e_i \subset G e_i$. Therefore, $S e_i = G e_i \cup G e$.

If $i \neq j$, $G e_i \cap S e_j = \emptyset$. For, if $g \in G$ such that $g e_i \in S e_j$, $e_i \in S e_j$, and there is an $s \in S$ such that $e_i = s e_j$. Then, $e_i = e_i^2 = (s e_j) e_i = s e = e$, which is a contradiction. Therefore, $G e_i \cap S e_j = \emptyset$. Since $G e \subset S e_j$, it follows that for each $i = 1, 2$, $G e_i \cap G e = \emptyset$. Hence, $S e_i = G e_i$. Ge.

From above, $\text{Bd}(S) = S e_1 \cup S e_2 = G e_1 \cup G e \cup G e_2$, and no two of these intersect. Thus, $\text{Bd}(S) - G e_1 = G e \cup G e_2 = S e_2$. $S e_2$ is closed in $\text{Bd}(S)$, so $G e_1$ is open in $\text{Bd}(S)$. Letting $\partial(G e_1)$ be the boundary of $G e_1$ in $\text{Bd}(S)$, we see, since $G e_1$ is open in $\text{Bd}(S)$, that $\partial(G e_1) = (G e_1)^* - G e_1 = S e_1 - G e_1 = G e$. Furthermore, $e_2 \in (G e_1)^* = S e_1$ from above, so we see that $G e_1$ is a nonempty, nondense, open subset of the $(n - 1)$-manifold $\text{Bd}(S)$. Hence [6], $\dim G e = \dim \partial(G e_1) = (n - 1) - 1 = n - 2$. The theorem follows from Theorem 3.

Conclusion. The results of this paper give a partial characterization of S. It should be observed that in all cases presented, S cannot be compact. One wonders whether or not there is a compact S which satisfies our criterion. One also queries whether or not S is isomorphic to $V_{n-k} \times V_k$ for all k. We are presently working on these problems.

Bibliography

10. P. M. Rice, A course in algebraic topology, Notes, Univ. of Georgia, Athens, 1965–66.

University of Georgia, Athens, Georgia 30601

University of Florida, Gainesville, Florida 32601