THE DEGREES OF THE FACTORS OF CERTAIN POLYNOMIALS OVER FINITE FIELDS

W. H. MILLS

Abstract. Neal Zierler has discovered that the polynomial $x^{86} + x + 1$ over GF(2) is the product of 13 irreducible factors of degree 45 and that the polynomial $x^{1613} + x + 1$ over GF(2) is the product of 337 irreducible factors of degree 49. We prove a general theorem that includes these results, as well as some other well known results, as special cases.

Let K be a finite field containing exactly q elements. Let r be a power of q, say $r = q^n$. For any polynomial $f(x) = \sum a_i x^i$ over K we set

$$\tilde{f}(x) = \sum a_i x^{(r-1)i/(r-1)}$$

and

$$\tilde{f}^g(x) = xf(x^{r-1}) = \sum a_i x^{ri}.$$

Lemma 1 (Ore). Let $A(x)$ and $B(x)$ be polynomials over K and set $C(x) = A(x)B(x)$. Then $C^\theta(x) = A^\theta(B^\theta(x))$.

Proof. Set $A(x) = \sum a_i x^i$ and $B(x) = \sum b_i x^i$. Then

$$A^\theta(B^\theta(x)) = \sum_i a_i \left(\sum_j b_j x^{rj} \right)^{ri} = \sum_{i,j} a_i b_j x^{ri+j} = C^\theta(x).$$

Theorem 1. Let $f(x)$ and $g(x)$ be polynomials over K. Then $f(x)|g(x)$ if and only if $\tilde{f}(x)|\tilde{g}(x)$.

Proof. Suppose first that $f(x)|g(x)$ and set $g(x) = h(x)f(x)$. By Lemma 1 we have $g^\theta(x) = h^\theta(f^\theta(x))$. Since $x|h^\theta(x)$ this gives us $f^\theta(x)|g^\theta(x)$. Therefore we have $\tilde{f}(x^{r-1})|\tilde{g}(x^{r-1})$ which implies that $\tilde{f}(x)|\tilde{g}(x)$.

On the other hand suppose that $\tilde{f}(x)|\tilde{g}(x)$ and set $g(x) = A(x) + B(x)$, where $f(x)|A(x)$ and the degree of $B(x)$ is less than that of $f(x)$. By the first part of the proof we have $\tilde{f}(x)|\tilde{A}(x)$ so that

Received by the editors October 27, 1969.

AMS Subject Classifications. Primary 1225.

Key Words and Phrases. Factors of polynomials, polynomials over finite fields.
0 \equiv \hat{g}(x) = \hat{A}(x) + \hat{B}(x) \equiv \hat{B}(x) \pmod{\hat{f}(x)}.

Now the degree of \(\hat{B}(x) \) is less than that of \(\hat{f}(x) \), so that \(\hat{B}(x) = 0 \) and \(B(x) = 0 \). Therefore we have \(f(x) \divides g(x) \).

Theorem 2. Suppose \(f(x) \divides x^N - 1 \) and let \(d \) be a factor of \(r - 1 \). Then the degree of every irreducible factor of \(\hat{f}(x^d) \) over \(K \) divides \(nN \).

Proof. By Theorem 1 we have \(\hat{f}(x) \divides x^{(rN-1)/(r-1)} - 1 \). This is equivalent to \(\hat{f}(x^d) \divides x^{dN/(r-1)} - 1 \). Since \(d \divides r - 1 \) this implies that \(\hat{f}(x^d) \divides x^{dN-1} - 1 \). Therefore every root of \(\hat{f}(x^d) \) lies in \(GF(r^N) \). Since \(r^N = q^{nN} \) this implies that the degree of every irreducible factor of \(\hat{f}(x^d) \) over \(K \) divides \(nN \).

Corollary. If \(r = q^n \), then the degree of every irreducible factor of \(x^{1+r} + x + 1 \) over \(GF(q) \) divides \(3n \).

This corollary is the special case of Theorem 2 with \(f(x) = x^2 + x + 1 \), \(N = 3 \), and \(d = 1 \). It is well known and proofs have been given by a number of authors. See [1, p. 93].

Using Theorem 2 we can obtain many other results of the same nature. For example, since \(x^3 + x + 1 \) divides \(x^7 - 1 \) over \(GF(2) \) we see that if \(r = 2^n \), then the degree of every irreducible factor of \(x^{1+r+r^3} + x + 1 \) over \(GF(2) \) divides \(7n \).

Similarly if \(r = 2^n \), then the degree of every irreducible factor of \(x^{1+r+r^3+r^7} + x + 1 \) over \(GF(2) \) divides \(15n \).

When certain additional conditions are satisfied the degrees of the irreducible factors of \(\hat{f}(x^d) \) are all equal to \(nN \). To show this we need the following result.

Lemma 2. Let \(f(x) \) be an irreducible polynomial over \(K \), and let \(g(x) \) be an arbitrary polynomial over \(K \). Suppose for some positive integer \(d \), \(\hat{f}(x^d) \) and \(\hat{g}(x^d) \) have a root in common. Then \(f(x) \divides g(x) \).

Proof. Let \(h(x) \) be the greatest common divisor of \(\hat{f}(x^d) \) and \(\hat{g}(x^d) \). Then \(h(x) \) is not a constant. Let \(a \) be the set of all polynomials \(A(x) \) over \(K \) such that \(h(x) \divides A(x^d) \). Using Theorem 1 we see that \(a \) is an ideal in the principal ideal ring \(K[x] \). Since \(f(x) \subseteq a, 1 \not\subseteq a, \) and \(f(x) \) is irreducible, it follows that \(a \) consists of precisely the multiples of \(f(x) \). Since \(g(x) \subseteq a, \) we have \(f(x) \divides g(x) \) and the proof is complete.

Theorem 1 and Lemma 2 are closely related to results of Zierler [3].

Theorem 3. Let \(f(x) \) be an irreducible polynomial over \(K \) with period \(N \). Let \(d \) be a factor of \(r - 1 \) and set \(r - 1 = de \). Suppose that \((e, dN) = 1 \) and that every prime factor of \(n \) is also a factor of \(N \). Then every irreducible factor of \(\hat{f}(x^d) \) over \(K \) has degree \(nN \).
Proof. Since $f(x)|x^N-1$ it follows from Theorem 1 that
\[
\hat{f}(x) \mid x^{(r^N-1)/(r-1)} - 1.
\]
Replacing x by x^d we obtain $\hat{f}(x^d) \mid x^{(r^N-1)/e} - 1$. Let α be a root of $\hat{f}(x^d)$. Then we have $\alpha^{(r^N-1)/e} = 1$ and $\alpha \in \mathbb{F}(r^N)$. Now $r \equiv 1 \pmod{e}$ and therefore
\[
(r^N - 1)/e = d(r^N - 1)/(r - 1)
= d(r^{N-1} + r^{N-2} + \ldots + r + 1)
= dN \pmod{e}.
\]
Since $(e, dN) = 1$ it follows that e is relatively prime to the order of α. Let m be the degree of α over $\mathbb{F}(r)$. Then $m \mid N$ and $\alpha^{m-1} = 1$. Since e is relatively prime to the order of α we have
\[
1 = \alpha^{(r^m-1)/e} = \alpha^d(r^{m-1})/(r-1).
\]
This gives us $\hat{B}(\alpha^d) = 0$ where $B(x) = x^m - 1$. Thus $\hat{f}(x^d)$ and $\hat{B}(x^d)$ have a root in common. By Lemma 2 we have $f(x) \mid B(x)$. Since N is the period of $f(x)$ this gives us $N \mid m$, and therefore $m = N$.

Now let M be the degree of α over K. Then $M \mid nN$. Suppose $M < nN$. Then for some prime λ we have $\lambda M \mid nN$. Since every prime factor of n is also a factor of N we have $\lambda \mid N$. Thus α is contained in a field of degree $n(N/\lambda)$ over K. This field has degree N/λ over $\mathbb{F}(r)$, which implies that $m < N$, a contradiction. Therefore we have $M = nN$. Since α was an arbitrary root of $\hat{f}(x^d)$ it follows that every irreducible factor of $\hat{f}(x^d)$ over K has degree nN, and the proof is complete.

Setting $d = r - 1$ and $e = n = 1$ in Theorem 3 we obtain the following result:

Corollary 1. (Zierler's generalization of the theorem of Ore, Gleason, and Marsh.) Let $f(x)$ be an irreducible polynomial over $\mathbb{F}(q)$, say $f(x) = \sum a_i x^i$. Let N be the period of $f(x)$. Then every irreducible factor of $\sum a_i x^{q-1}$ over $\mathbb{F}(q)$ has degree N.

We observe that $x^2 + x + 1$ is irreducible over $\mathbb{F}(q)$ if and only if $q \equiv 2 \pmod{3}$. Thus setting $d = 1$, $n = 3^*$, $f(x) = x^2 + x + 1$, and $N = 3$ we obtain the following special case of Theorem 3:

Corollary 2. If $q \equiv 2 \pmod{3}$, $n = 3^* \geq 1$, $r = q^*$, and $d = 1$, then every irreducible factor of $x^{1+r} + x + 1$ over $\mathbb{F}(q)$ has degree $3n$.

Setting $q = 2$, $n = 7^*$, $d = 1$, $f(x) = x^3 + x + 1$, and $N = 7$ in Theorem 3 we obtain the following result:
Corollary 3. If $n = 7^s \geq 1$ and $r = 2^n$, then the degree of every irreducible factor of $x^{1+r+r^2} + x + 1$ over GF(2) is $7n$.

For example, $x^{16513} + x + 1$ is the product of 337 irreducible factors over GF(2), each of which has degree 49.

Similarly, setting $q = 2$, $n = 3^s 5^t$, $d = 1$, $f(x) = x^4 + x + 1$, and $N = 15$ we obtain this result:

Corollary 4. If $n = 3^s 5^t \geq 1$ and $r = 2^n$, then every irreducible factor of $x^{1+r+r^2+r^3} + x + 1$ over GF(2) has degree $15n$.

For example, $x^{585} + x + 1$ is the product of 13 irreducible factors of degree 45 over GF(2).

References

Institute for Defense Analyses, Princeton, New Jersey 08540