A characterization of semilocal inertial coefficient rings
HTML articles powered by AMS MathViewer
- by W. C. Brown and E. C. Ingraham
- Proc. Amer. Math. Soc. 26 (1970), 10-14
- DOI: https://doi.org/10.1090/S0002-9939-1970-0260730-2
- PDF | Request permission
Abstract:
A commutative ring $R$ with identity is called an inertial coefficient ring if every finitely generated $R$-algebra $A$ with $A/N$ separable over $R$ contains a separable subalgebra $S$ such that $S + N = A$, where $N$ is the Jacobson radical of $A$. Thus inertial coefficient rings are those commutative rings $R$ for which a generalization of the Wedderburn Principal Theorem holds for suitable $R$-algebras. Our purpose is to prove that a commutative ring with only finitely many maximal ideals is an inertial coefficient ring (if and) only if it is a finite direct sum of Hensel rings.References
- Maurice Auslander and Oscar Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367–409. MR 121392, DOI 10.1090/S0002-9947-1960-0121392-6
- Gorô Azumaya, On maximally central algebras, Nagoya Math. J. 2 (1951), 119–150. MR 40287
- William C. Brown, Strong inertial coefficient rings, Michigan Math. J. 17 (1970), 73–84. MR 263802 N. Bourbaki, Algèbre commutative. Chapitres I, II, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146.
- Edward C. Ingraham, Inertial subalgebras of algebras over commutative rings, Trans. Amer. Math. Soc. 124 (1966), 77–93. MR 200310, DOI 10.1090/S0002-9947-1966-0200310-1
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 10-14
- MSC: Primary 13.95
- DOI: https://doi.org/10.1090/S0002-9939-1970-0260730-2
- MathSciNet review: 0260730