On a conjecture of E. Granirer concerning the range of an invariant mean
HTML articles powered by AMS MathViewer
- by Ching Chou
- Proc. Amer. Math. Soc. 26 (1970), 105-107
- DOI: https://doi.org/10.1090/S0002-9939-1970-0260899-X
- PDF | Request permission
Abstract:
The purpose of this paper is to prove the following conjecture of E. Granirer: if $S$ is an infinite right cancellation left amenable semigroup then for each left invariant mean $\phi$ of $S$.References
- Ching Chou, On the size of the set of left invariant means on a semi-group, Proc. Amer. Math. Soc. 23 (1969), 199–205. MR 247444, DOI 10.1090/S0002-9939-1969-0247444-1
- E. Granirer, Extremely amenable semigroups, Math. Scand. 17 (1965), 177–197. MR 197595, DOI 10.7146/math.scand.a-10772
- E. E. Granirer, On the range of an invariant mean, Trans. Amer. Math. Soc. 125 (1966), 384–394. MR 204551, DOI 10.1090/S0002-9947-1966-0204551-9
- Joram Lindenstrauss, A short proof of Liapounoff’s convexity theorem, J. Math. Mech. 15 (1966), 971–972. MR 0207941
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 105-107
- MSC: Primary 20.92
- DOI: https://doi.org/10.1090/S0002-9939-1970-0260899-X
- MathSciNet review: 0260899