Regularity of Baire measures
HTML articles powered by AMS MathViewer
- by N. Dinculeanu and Paul W. Lewis
- Proc. Amer. Math. Soc. 26 (1970), 92-94
- DOI: https://doi.org/10.1090/S0002-9939-1970-0260968-4
- PDF | Request permission
Abstract:
In a recent paper N. Dinculeanu and I. Kluvánek showed that any Baire measure with values in a locally convex topological vector space is regular. Their construction depended heavily on the regularity of nonnegative Baire measures. In the present paper, a proof of the regularity is given which holds at once for the nonnegative case and the vector case.References
- N. Dinculeanu and I. Kluvanek, On vector measures, Proc. London Math. Soc. (3) 17 (1967), 505–512. MR 214722, DOI 10.1112/plms/s3-17.3.505
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- G. G. Gould, Integration over vector-valued measures, Proc. London Math. Soc. (3) 15 (1965), 193–225. MR 174694, DOI 10.1112/plms/s3-15.1.193
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869
- P. W. Lewis, Some regularity conditions on vector measures with finite semi-variation, Rev. Roumaine Math. Pures Appl. 15 (1970), 375–384. MR 264027
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 92-94
- MSC: Primary 28.50
- DOI: https://doi.org/10.1090/S0002-9939-1970-0260968-4
- MathSciNet review: 0260968