Positively curved deformations of invariant Riemannian metrics
HTML articles powered by AMS MathViewer
- by Alan Weinstein
- Proc. Amer. Math. Soc. 26 (1970), 151-152
- DOI: https://doi.org/10.1090/S0002-9939-1970-0262977-8
- PDF | Request permission
Abstract:
Let ${K_\gamma }$ denote the sectional curvature function of the Riemannian metric $\gamma$ on a manifold $M$. Suppose $M$ admits no metric $\gamma$ invariant under the action of a compact group $G$ and having ${K_\gamma } > 0$. It is shown that a $G$-invariant metric $\gamma (0)$ with ${K_{\gamma (0)}} \geqq 0$ cannot be embedded in a $1$-parameter family $\gamma (t)$ for which ${[d{K_{\gamma (t)}}/dt]_{t = 0}}$ is positive wherever ${K_{\gamma (0)}}$ is zero.References
- M. Berger, Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 15 (1961), 179–246 (French). MR 133083 —, Trois remarques sur les variétés riemannienes à courbure positive, C. R. Acad. Sci. Paris Sér. A-B 263 (1966), A76-A78. MR 33 #7966.
- Nolan R. Wallach, Homogeneous positively pinched Riemannian manifolds, Bull. Amer. Math. Soc. 76 (1970), 783–786. MR 257935, DOI 10.1090/S0002-9904-1970-12551-4
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 151-152
- MSC: Primary 53.72
- DOI: https://doi.org/10.1090/S0002-9939-1970-0262977-8
- MathSciNet review: 0262977