## AN EXAMPLE ON EMBEDDING UP TO HOMOTOPY TYPE

## ELMER REES1

ABSTRACT. A finite complex K is constructed with the following property.  $K \bigvee S^r$  embeds in  $R^n$  up to homotopy type but K does not.

T. Ganea (see [4, p. 156]) has asked the following

QUESTION. If K is a finite complex dominated by a subset of  $\mathbb{R}^n$ , is there a subcomplex of  $\mathbb{R}^n$  of the homotopy type of K?

In this note this is answered negatively. A finite complex  $K_n$  of dimension 8n-3 is constructed (for each  $n \ge 3$ ) which cannot be embedded up to homotopy type in  $S^{8n}$ ; however, there is a subcomplex of  $S^{8n}$  homotopically equivalent to  $K_n \lor S^{4n}$ .

Consider the complex Stiefel manifold  $W_{2n,2}$  of two frames in  $\mathbb{C}^{2n}$ .  $W_{2n,2}$  has a cell decomposition  $(S^{4n-3} \vee S^{4n-1}) \cup_{\alpha_n} e^{8n-4}$  where  $\alpha_n = i_{4n-3} \circ \beta_n + \begin{bmatrix} i_{4n-3}, i_{4n-1} \end{bmatrix}$  ( $i_m$  denotes the inclusion of  $S^m$ ). Its suspension  $SW_{2n,2}$  is homotopically equivalent to  $K_n \vee S^{4n}$  where  $K_n$  is  $S^{4n-2} \cup_{S\beta_n} e^{8n-3}$  and  $S^2\beta_n = -\begin{bmatrix} \iota_{4n-1}, \iota_{4n-1} \end{bmatrix} \in \pi_{8n-3}S^{4n-1}$ . All this is contained in [3].

PROPOSITION 1.  $K_n$  does not embed up to homotopy type in  $S^{8n}$  if  $n \ge 3$ .

PROOF. If  $K_n$  does embed in  $S^{8n}$ , it has complement homotopically equivalent to  $S^2 \cup_{\gamma_n} e^{4n+1}$  and  $S^{4n-3}\gamma_n = S^2\beta_n = -\left[\iota_{4n-1}, \, \iota_{4n-1}\right]$  by the results of [2]. But by Corollary 1.3 of [1], if  $n \ge 3$  then  $\left[\iota_{4n-1}, \, \iota_{4n-1}\right]$  is not a (4n-3)-fold suspension.

Proposition 2.  $W_{2n,2}$  embeds in  $S^{8n-1}$ .

PROOF.  $W_{2n,2}$  is the sphere bundle of an  $\mathbb{R}^{4n-2}$  bundle  $\xi$  over  $S^{4n-1}$  and  $\xi \oplus \epsilon^2$  is trivial. So  $W_{2n,2}$  is included in the total space of  $\epsilon^{4n}$  which embeds in  $S^{8n-1}$ .

COROLLARY.  $K_n \vee S^{4n}$  embeds in  $S^{8n}$ .

PROOF.  $W_{2n,2}$  embeds in  $S^{8n-1}$  and so its suspension (which is homotopically equivalent to  $K_n \vee S^{4n}$ , by the above) embeds in  $S^{8n}$ .

Received by the editors November 30, 1969.

AMS subject classifications. Primary 5570.

Key words and phrases. Embedding up to homotopy type, complex Stiefel manifolds.

<sup>&</sup>lt;sup>1</sup> Supported in part by National Science Foundation grant GP-7952X1.

Therefore the complexes  $K_n$  have the required properties.

## REFERENCES

- 1. J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603-632. MR 25 #2614.
- 2. G. Cooke, Embedding certain complexes up to homotopy type in euclidean space, Ann. of Math. (2) 90 (1969), 144-156.
- 3. I. M. James and J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres. I, Proc. London Math. Soc. (3) 4 (1954), 196-218. MR 15, 892.
- 4. S. P. Novikov, *The topology summer institute* (Seattle, Wash., 1963), Uspehi Mat. Nauk 20 (1965), no. 1 (121), 147-169 = Russian Math. Surveys 20 (1965), no. 1, 145-167.

Institute for Advanced Study, Princeton, New Jersey 08540.