$\mathfrak {M}^3$ admitting a certain embedding of $P^2$ is a pseudo $P^3$
HTML articles powered by AMS MathViewer
- by C. D. Feustel
- Proc. Amer. Math. Soc. 26 (1970), 215-216
- DOI: https://doi.org/10.1090/S0002-9939-1970-0263083-9
- PDF | Request permission
Abstract:
Let $M$ be a $3$-manifold and ${P^2}$ projective $2$-space. In this paper it is shown that if there exists an embedding $f:{P^2} \to M$ such that $f{ \ast _2}:{\pi _2}({P^2}) \to {\pi _2}(M)$ is trivial, then $M$ is, except for a fake cell, projective $3$-space.References
- John Stallings, On the loop theorem, Ann. of Math. (2) 72 (1960), 12–19. MR 121796, DOI 10.2307/1970146
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 215-216
- MSC: Primary 57.01
- DOI: https://doi.org/10.1090/S0002-9939-1970-0263083-9
- MathSciNet review: 0263083