ON \mathfrak{g}-NORMALIZERS AND \mathfrak{g}-HYPERCENTER

NOBUO INAGAKI

Abstract. In this note, we shall prove a theorem which is a generalization of the following theorem: Let G be a soluble group, then the intersection of all system normalizers of G is the hypercenter of G.

Recently, Carter and Hawkes [1] have generalized the construction of system normalizers of finite soluble groups introducing the concept of the \mathfrak{g}-normalizer, and B. Huppert [2] has generalized the hypercenter introducing the concept of the \mathfrak{g}-hypercenter. In this note, we shall show the relations between \mathfrak{g}-normalizers and the \mathfrak{g}-hypercenter, which generalize the theorem [3, VI. 11.11] on the relations between the system normalizers and the hypercenter. The methods of proof of our theorem are similar to those in [3].

1. Definitions. All groups in this note are soluble and finite.

If nonempty formations $\mathfrak{F}(p)$, one for each p, are given, the local formation \mathfrak{F} locally defined by $\{\mathfrak{F}(p)\}$ is the class of all groups G such that, whenever M is a chief factor of G, of order p^n, say, then the automorphisms group induced on M by G belongs to $\mathfrak{F}(p)$. And M is called an \mathfrak{F}-central-p-chief factor. By Carter and Hawkes [1, p. 177] we can choose $\mathfrak{F}(p)$ such that $\mathfrak{F}(p) \subseteq \mathfrak{g}$. Let $\{S_p\}$ be a set of p-complements of G, one for each prime p dividing $|G|$, and let γ be the Sylow system of G generated by $\{S_p\}$. We write $T_p = S_p \cap C_p$ for each prime p dividing $|G|$, where C_p is the intersection of the centralizers of the \mathfrak{g}-central-p-chief factors of G. The set $T = \{T_p\}$ will be called an \mathfrak{g}-system of G(see [1]). And then the subgroup $D = \bigcap_p N_\alpha(T_p)$ will be called the \mathfrak{g}-normalizer of G (see [1]). Since any two Sylow systems of G are conjugate in G, it follows that the \mathfrak{g}-normalizers of G form a characteristic conjugacy class of subgroups of G. Let N be a normal subgroup of G with a normal chain $e = N_0 \lhd N_1 \lhd \cdots \lhd N_r = N$ where each N_i is normal in G. N is called an \mathfrak{g}-hypercentral subgroup whenever the following conditions are satisfied

(1) N_i/N_{i-1} is a chief factor of G.

(2) If the order of N_i/N_{i-1} is p^n_i, then $G/C_\alpha(N_i/N_{i-1}) \subseteq \mathfrak{F}(p_i)$.

As a product of \mathfrak{g}-hypercentral normal subgroups is \mathfrak{g}-hypercentral, so the product of all \mathfrak{g}-hypercentral normal subgroups of G
is called the \mathfrak{g}-hypercenter of G, say $Z_{\mathfrak{g}}$ (see [2]). If $\mathfrak{g}(p) \subset \mathfrak{g}$, then \mathfrak{g}-normalizers and \mathfrak{g}-hypercenter depend only on \mathfrak{g} and not on $\mathfrak{g}(p)$ (see [1], [2]).

2. **Theorem.** Let G be a soluble group, then

(a) Each \mathfrak{g}-normalizer of G is not contained in any proper normal subgroup of G.

(b) The subgroup being generated by all \mathfrak{g}-normalizers of G is G.

(c) The intersection of all \mathfrak{g}-normalizers of G is the \mathfrak{g}-hypercenter.

This is a generalization of [3, Theorem VI, 11.11].

Proof. (a) If M is a maximal subgroup of G, then G/M is a central chief factor and so G/M is \mathfrak{g}-central. Hence each \mathfrak{g}-normalizer D of G covers on G/M by Theorem 4.1 of [1], so $D \subseteq M$.

(b) Since all \mathfrak{g}-normalizers of G are conjugate, the subgroup being generated by all \mathfrak{g}-normalizers of G is a normal subgroup containing an \mathfrak{g}-normalizer of G. From (a), we see it is G.

(c) As the hypercenter $Z_{\mathfrak{g}}$ of G contains only \mathfrak{g}-central chief factors of G, so $Z_{\mathfrak{g}}$ is covered by every \mathfrak{g}-normalizer of G, thus $Z_{\mathfrak{g}} \subseteq \bigcap_{e \in \mathfrak{g}} D^e$. Set $\phi = \{T^e\}$ and $\phi^* = \{T^e Z_{\mathfrak{g}} / Z_{\mathfrak{g}}\}$. By [1, Theorem 4.1, Corollary 2], as \mathfrak{g}-normalizers are homomorphic invariant,

$$N_\mathfrak{g}(N(\phi)) Z_{\mathfrak{g}} / Z_{\mathfrak{g}} \subseteq N_\mathfrak{g}(Z_{\mathfrak{g}} / Z_{\mathfrak{g}}) = N_\mathfrak{g}(N(\phi^*)).$$

To prove the theorem, it is sufficient to show $\bigcap_{e \in \mathfrak{g}} N_\mathfrak{g}(N(\phi))^e = e$, because we see $\bigcap_{e \in \mathfrak{g}} N_\mathfrak{g}(N(\phi))^e Z_{\mathfrak{g}} / Z_{\mathfrak{g}} = e$ so $\bigcap_{e \in \mathfrak{g}} N_\mathfrak{g}(N(\phi))^e \subseteq Z_{\mathfrak{g}}$, since it is clear $\bigcap_{e \in \mathfrak{g}} N_\mathfrak{g}(\phi)^e \subseteq \bigcap_{e \in \mathfrak{g}} N_\mathfrak{g}(N(\phi))^e$, then $\bigcap_{e \in \mathfrak{g}} D^e = \bigcap_{e \in \mathfrak{g}} Z_{\mathfrak{g}}$, thus $\bigcap_{e \in \mathfrak{g}} D^e = Z_{\mathfrak{g}}$. Hence we may assume $Z_{\mathfrak{g}} = e$. Let N be a minimal normal subgroup of G, which is contained in $N_\mathfrak{g}(D) = N_\mathfrak{g}(N(\phi))$. As $Z_{\mathfrak{g}} = e$, N is an \mathfrak{g}-excentral, which is avoided by $N(\phi) = D$, by Theorem 4.1 of [1]. As $N \subseteq N_\mathfrak{g}(N(\phi))$ so that $[N, N(\phi)] \subseteq N \cap D = e$, D is centralized by N, so G generated by all D's is centralized by N, which is a contradiction since N would be in $Z_{\mathfrak{g}}$.

References

Saitama University, Urawa, Japan