ON THE FREE PRODUCT OF TWO GROUPS WITH AN AMALGAMATED SUBGROUP OF FINITE INDEX IN EACH FACTOR¹

A. KARRASS AND D. SOLITAR

ABSTRACT. Let G = (A * B; U) where U is finitely generated and of finite index $\neq 1$ in both A and B. We prove that G is a finite extension of a free group iff A and B are both finite. In particular, this answers in the negative a question of W. Magnus as to whether or not G can be free. Analogous results are obtained for tree products and HNN groups.

1. Introduction. Let G = (A * B; U) be a free product with an amalgamated subgroup, where A, B are finitely generated groups. W. Magnus asked whether or not G can ever be a free group if U is of finite index $(\neq 1)$ in both A and in B. We prove that G cannot be free in this case, and more generally that G is a finite extension of a free group iff A and B are both finite groups. Moreover, we establish analogous results for a tree product and for an HNN group of the form

$$\langle t_1, \dots, t_r, K; \text{ rel } K, t_1 L_1 t_1^{-1} = M_1, \dots, t_r^{-1} L_r t_r^{-1} = M_r \rangle$$

where K is finitely generated and L_i , M_i are each of finite index in K (see [6] for definitions and notations).

2. Lemmas.

LEMMA 1. If G is a free group and G = (A * B; U) where U is finitely generated and of finite index in both A and B, then A = U or B = U.

PROOF. Since U is finitely generated, U is a free factor of a subgroup H which is of finite index in G (see M. Hall Jr. [3] and [5]). It then follows that

$$(1) A \cap H = U = B \cap H.$$

For, $A \cap H$ is a subgroup of H and contains a free factor U of H; hence U is a free factor of $A \cap H$. But U is of finite index in $A \cap H$; hence $A \cap H = U$, and similarly $B \cap H = U$.

Received by the editors January 30, 1970.

AMS 1969 subject classifications. Primary 2052, 2010; Secondary 2054.

Key words and phrases. Amalgamated products, generalized free products, tree products, HNN groups, finite extensions of free groups, free subgroups of finite index, free groups.

¹ This research was supported by a grant from the National Research Council of Canada.

Since H is of finite index in G, H contains a subgroup H_1 , normal and of finite index in G. Intersecting the equations (1) with H_1 , we obtain

$$(2) A \cap H_1 = U \cap H_1 = B \cap H_1.$$

Therefore, $U \cap H_1$ is a nontrivial normal subgroup of A and of B, and hence normal in G. Consequently, U is of finite index in G, which is impossible unless A = U or B = U (otherwise $(ab)^n$ where $a \in A - U$ and $b \in B - U$, $n = 0, \pm 1, \pm 2, \cdots$ determine infinitely many cosets of U in G).

LEMMA 2. Let $G = \Pi * (A_i; U_{jk} = U_{kj})$ be a tree product of groups A_i with the subgroups U_{jk} of A_j and U_{kj} of A_k amalgamated. Suppose G is a free group and each U_{jk} is finitely generated and of finite index in A_j . Then G equals one of its vertices A_n and all the other vertices A_i are of finite index in A_n .

PROOF. We first consider the case where G is the tree product of finitely many vertices A_1, \dots, A_r and use induction on r. Now the finite tree product G has an extremal vertex say A_r , which is joined to a unique vertex, say A_{r-1} . The subgroup of G generated by A_1, \dots, A_{r-1} is just their tree product. Hence by inductive hypothesis, each of these r-1 vertices is of finite index in one of them, say A_1 . Then $G = (A_r * A_1; U_{r,r-1})$, and hence by Lemma 1, all vertices of G are of finite index in either A_1 or in A_r .

Suppose now that G has infinitely many vertices. Let A_n be a vertex of minimum rank; moreover, if A_n is a cyclic group, we may choose A_n to be maximal among the vertices which are cyclic. We show that every other vertex A_i of G is of finite index in A_n . For, A_i and A_n are contained in a finite subtree of G; hence the vertices of this finite subtree are all of finite index in one of them, say A_k . From the Schreier rank formula, it follows that $A_k = A_n$.

3. The theorem for amalgamated products.

THEOREM 1. Let G = (A * B; U) where U is finitely generated and of finite index $(\neq 1)$ in both A and B. Then G has a free subgroup of finite index iff A and B are both finite groups.

PROOF. If A and B are finite, then G has a free subgroup of finite index (see the proof of Theorem 2 in G. Baumslag [1]).

Conversely, suppose G has a free subgroup H of finite index. Then by the subgroup theorem in [6], H is an HNN group of the form

(3)
$$H = \langle t_1, t_2, \dots, t_r, S; \text{rel } S, t_1 U_H^{\delta_1} t_1^{-1} = U_H^{\delta_1'}, \dots, t_r U_H^{\delta_r} t_r^{-1} = U_H^{\delta_r'} \rangle,$$

where S is a tree product whose vertices are conjugates of A or B intersected with H, and whose amalgamated subgroups are conjugates of U intersected with H. Moreover, neighboring vertices may be expressed in the form A_H^D , B_H^D with U_H^D as the subgroup amalgamated between them; also $A_H^{B_i}$ and $B_H^{B_i}$ are among the vertices of S.

Since U is finitely generated and of finite index in A and B, the subgroup amalgamated between two vertices of S is finitely generated and of finite index in both these vertices. Hence by Lemma 2, S is equal to one of its vertices, and each of the vertices of S is of finite index in S.

If N is the normal subgroup of H generated by S, then N is itself a tree product in which the vertices are the conjugates of S by the freely reduced words in t_1, \dots, t_r ; moreover, neighboring vertices have the form

$$Wt_{i}^{\epsilon}St_{i}^{-\epsilon}W^{-1}$$
, WSW^{-1}

and the subgroup amalgamated between them is

$$Wt_i^{\epsilon}U_H^{\alpha}t_i^{-\epsilon}W^{-1} = WU_H^{\beta}W^{-1}$$

where $\alpha = \delta_i$, $\beta = \delta_i'$ if $\epsilon = 1$, and $\alpha = \delta_i'$, $\beta = \delta_i$ if $\epsilon = -1$ (see Lemma 2 of [6]). Hence Lemma 2 applies to N, and we obtain that N is one of its vertices, so that N = S since N is normal. But then N is a finitely generated normal subgroup of the free group H, and so N = 1, or N is of finite index in H which by (3) implies N = H. However, $N \neq H$ because otherwise H = S, which by the above is a vertex A_H^D or B_H^D ; thus a conjugate of H is in A or in B, contrary to the fact that A and B are of infinite index in G. Therefore N = 1 and both A and B are finite since $A \cap H$, $B \cap H$ are both in N and of finite index in A, B respectively.

COROLLARY. Let $G = \Pi * (A_i; U_{jk} = U_{kj})$ be a tree product of finitely many groups A_i with the subgroups U_{jk} of A_j and U_{kj} of A_k amalgamated. Suppose each U_{jk} is finitely generated and of finite index in A_j , and that for some p, q we have $A_p \neq U_{pq}$ and $A_q \neq U_{qp}$. Then G has a free subgroup of finite index iff each A_i is a finite group.

PROOF. Suppose first that G has a free subgroup of finite index; then $(A_p * A_q; U_{pq} = U_{qp})$ also has such. Hence by the above theorem A_p must be finite. Moreover, since every vertex of G can be joined to A_p by a path each of whose edges is of finite index in the vertices of the edge, each A_i must be finite.

Conversely, suppose each A_i is finite. One shows by induction on the number of vertices of G that there is a homomorphism of G onto a finite group which is one-one on each A_i and that a normal subgroup having trivial intersection with each A_i is free.

4. An analogous theorem for HNN groups.

LEMMA 3. Let G be an HNN group

(4)
$$G = \langle t_1, \dots, t_r, K; \text{rel } K, t_1 L_1 t_1^{-1} = M_1, \dots, t_r L_r M_r^{-1} = M_r \rangle$$
.

Then any subgroup H of G which has trivial intersection with each conjugate of K must be a free group.

PROOF. Let X be the free group on x_1, x_2, \dots, x_r , and Y the free group on y_1, y_2, \dots, y_r . Then

$$X * G = Y * G$$

= $((X * K) * (Y * K); K * x_1 L_1 x_1^{-1} * \cdot \cdot \cdot = K * y_1 M_1 y_1^{-1} * \cdot \cdot \cdot),$

where $t_i = y_i^{-1}x_i$ (see Higman, Neumann and Neumann [4] or [6]). We show that the conjugates of H in X * G have trivial intersection with X * K. Let h ($\neq 1$) be an element of H, and let w be in X * G. When whw^{-1} is cyclically reduced as an element of X * G, an element ghg^{-1} with $g \in G$ results. On the other hand if $whw^{-1} \in X * K$, then whw^{-1} when cyclically reduced in X*G must yield an element of K, contrary to H having trivial intersection with the conjugates of K in G. Similarly, H has trivial intersection with the conjugates of Y * K in Y * G. Therefore by a theorem of H. Neumann (see [8] or [6]), H is free.

THEOREM 2. Let G be an HNN group as in (4) where K is finitely generated and each L_i , M_i is of finite index in K. Then G has a free subgroup of finite index iff K is finite. In particular, G cannot be free.

PROOF. Suppose first that K is finite. Then K can be embedded in a finite group Σ (for example, the group of all permutations on the elements of K) in such a way that the conjugate of L_i by some element s_i in Σ is M_i (see, for example corollary on p. 57 in Carmichael [2], or Philip Hall's proof p. 537 in B. H. Neumann [7]). Map G into Σ by sending K identically into itself in Σ and mapping $t_i \rightarrow s_i$. Then G is mapped homomorphically onto a finite group and the kernel is a normal subgroup having trivial intersection with K, and hence is free by Lemma 3.

Conversely, suppose that G has a free subgroup of finite index and

hence a normal free subgroup H of finite index. Suppose K is infinite. We first show that for each i, L_i or M_i must equal K. For otherwise the amalgamated product $(K*t_iKt_i^{-1}; M_i=t_iL_it_i^{-1})$ is a subgroup of G and hence possesses a free subgroup of finite index, contrary to Theorem 1. Hence for each i, either L_i or M_i equals K. We may therefore assume (replacing t_i by t_i^{-1} if necessary) that $K=M_i$ for some i. Let $G_i=gp(t_i,K)$ and $H_i=G_i\cap H$. Then the groups $t_i^lKt_i^{-i}\cap H_i=t_i^l(K\cap H_i)t_i^{-i}$ form an ascending chain of free subgroups of the same finite rank in H_i . Hence for some j, $t_i^l(K\cap H_i)t_i^{-j}=t_i^{l+1}(K\cap H_i)t_i^{-j-1}$, so that $K\cap H_i=t_i(K\cap H_i)t_i^{-1}$. Therefore $K\cap H_i$ is normal in G_i and therefore normal in H_i . But $K\cap H_i$ is finitely generated and is therefore of finite index in H_i and hence of finite index in G_i , contrary to K being of infinite index in G_i . Consequently K must be a finite group.

REFERENCES

- 1. G. Baumslag, On the residual finiteness of generalized free products of nilpotent groups, Trans. Amer. Math. Soc. 106 (1963), 193-209. MR 26 #2489.
- 2. R. D. Carmichael, An introduction to the theory of groups of finite order, Ginn, Boston, Mass., 1937; reprint Dover, New York, 1956. MR 17, 823.
- 3. M. Hall Jr., Coset representations in free groups, Trans. Amer. Math. Soc. 67 (1949), 421-432. MR 11, 322.
- 4. G. Higman, B. H. Neumann and H. Neumann, *Embedding theorems for groups*, J. London Math. Soc. 24 (1949), 247-254. MR 11, 322.
- 5. A. Karrass and D. Solitar, On finitely generated subgroups of a free group, Proc. Amer. Math. Soc. 22 (1969), 209-213.
- 6. ——, The subgroups of a free product of two groups with an amalgamated subgroup, Trans. Amer. Math. Soc. 150 (1970), 227-255.
- 7. B. H. Neumann, An essay on free products of groups with amalgamations, Philos. Trans. Roy. Soc. London Ser. A246 (1954), 503-554. MR 16, 10.
- 8. H. Neumann, (a) Generalized free products with amalgamated subgroups. I, Amer. J. Math. 70 (1948), 590-625. MR 10, 233. (b) II, Amer. J. Math. 71 (1949), 491-540. MR 11, 8.

YORK UNIVERSITY, TORONTO, ONTARIO, CANADA