ON THE FREE PRODUCT OF TWO GROUPS WITH
AN AMALGAMATED SUBGROUP OF FINITE
INDEX IN EACH FACTOR!

A. KARRASS AND D. SOLITAR

ABSTRACT. Let G=(4 * B; U) where U is finitely generated and
of finite index 1 in both 4 and B. We prove that G is a finite ex-
tension of a free group iff 4 and B are both finite. In particular, this
answers in the negative a question of W. Magnus as to whether or
not G can be free. Analogous results are obtained for tree products
and HNN groups.

1. Introduction. Let G=(4 = B; U) be a free product with an
amalgamated subgroup, where 4, B are finitely generated groups.
W. Magnus asked whether or not G can ever be a free group if U is of
finite index (1) in both 4 and in B. We prove that G cannot be free
in this case, and more generally that G is a finite extension of a free
group iff 4 and B are both finite groups. Moreover, we establish an-
alogous results for a tree product and for an HNN group of the form

<t17 ) tn K;rel KJ tlthl_l = Ml; Tty tr-lLi'tf—1 = M')

where K is finitely generated and L;, M; are each of finite index in K
(see [6] for definitions and notations).

2. Lemmas.

LemMA 1. If G is a free group and G= (A = B; U) where U is finitely
generated and of finite index in both A and B, then A =U or B=U.

Proor. Since U is finitely generated, U is a free factor of a subgroup
H which is of finite index in G (see M. Hall Jr. [3] and [5]). It then
follows that

(1) ANH=U=BNH.

For, AMH is a subgroup of H and contains a free factor U of H; hence
U is a free factor of ANH. But U is of finite index in AMNH; hence
ANH=U, and similarly BNH=U.
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Since H is of finite index in G, H contains a subgroup H;, normal
and of finite index in G. Intersecting the equations (1) with Hj,
we obtain

(2) Af'\H1=Uf\H1=Bf\H1.

Therefore, UNH; is a nontrivial normal subgroup of 4 and of B,
and hence normal in G. Consequently, U is of finite index in G, which
is impossible unless 4 = U or B= U (otherwise (ab)" wherea&A —U
and b&EB—U,n=0, +1, +£2, - - - determine infinitely many cosets
of Uin G).

LEMMA 2. Let G=1II % (4:; Ujx=Usj) be a tree product of groups A;
with the subgroups Uj of A; and Uy; of Ax amalgamated. Suppose G is
a free group and each Uj, is finitely generated and of finite index in A;.
Then G equals one of its vertices A, and all the other vertices A; are of
finile index in A.,.

Proor. We first consider the case where G is the tree product of
finitely many vertices 4;, + - -, 4, and use induction on r. Now the
finite tree product G has an extremal vertex say 4,, which is joined
to a unique vertex, say A,.;. The subgroup of G generated by
Ay, + - -, A, 1is just their tree product. Hence by inductive hypothe-
sis, each of these r —1 vertices is of finite index in one of them, say 4.
Then G=(4, * A1; U,,_1), and hence by Lemma 1, all vertices of G
are of finite index in either 4, or in 4,.

Suppose now that G has infinitely many vertices. Let 4, be a vertex
of minimum rank; moreover, if 4, is a cyclic group, we may choose
A, to be maximal among the vertices which are cyclic. We show that
every other vertex A4; of G is of finite index in 4,. For, 4; and 4, are
contained in a finite subtree of G; hence the vertices of this finite
subtree are all of finite index in one of them, say Ax. From the Schreier
rank formula, it follows that A.=4.,.

3. The theorem for amalgamated products.

THEOREM 1. Let G= (A * B; U) where U is finitely generated and of
finite index (#1) in both A and B. Then G has a free subgroup of finite
index iff A and B are both finite groups.

ProoF. If 4 and B are finite, then G has a free subgroup of finite
index (see the proof of Theorem 2 in G. Baumslag [1]).

Conversely, suppose G has a free subgroup H of finite index. Then
by the subgroup theorem in [6], H is an HNN group of the form
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by ' 5, — il
(3) H = (tytsy - ,t,S;rel S, ,Unty = Up, - - -, ,Ugly = Up),

where S is a tree product whose vertices are conjugates of 4 or B in-
tersected with H, and whose amalgamated subgroups are conjugates
of U intersected with H. Moreover, neighboring vertices may be
expressed in the form 43, BY wilth U as the subgroup amalgamated
between them; also 4 and BJi are among the vertices of S.

Since U is finitely generated and of finite index in 4 and B, the
subgroup amalgamated between two vertices of S'is finitely generated
and of finite index in both these vertices. Hence by Lemma 2, S is
equal to one of its vertices, and each of the vertices of S is of finite
index in S.

If N is the normal subgroup of H generated by S, then N is itself
a tree product in which the vertices are the conjugates of S by the
freely reduced words in 4, - - -, t,; moreover, neighboring vertices

have the form
1 —1

WESE'W ., WSW
and the subgroup amalgamated between them is
WUt W = WUpw™

where a=26;, =06/ if e=1, and =6/, 8=20;if e= —1 (see Lemma 2
of [6]). Hence Lemma 2 applies to N, and we obtain that N is one
of its vertices, so that V=S since N is normal. But then N is a finitely
generated normal subgroup of the free group H, and so N=1, or N
is of finite index in H which by (3) implies N =H. However, N=H
because otherwise H =S, which by the above is a vertex A2 or BY;
thus a conjugate of H isin 4 or in B, contrary to the fact that A and
B are of infinite index in G. Therefore N=1 and both 4 and B are
finite since AN H, BNH are both in N and of finite index in 4, B
respectively.

COROLLARY. Let G=I*(A;; Ujr=Ukj) be a tree product of finitely
many groups A; with the subgroups Uy of A; and U of Ax amal-
gamated. Suppose each Uji is finitely generated and of finite index in A,
and that for some p, ¢ we have A, 5 Upqand A ;7 U gp. Then G has a free
subgroup of finite index iff each A, is a finite group.

ProoF. Suppose first that G has a free subgroup of finite index;
then (A, * 4 ¢; Upg= Uyyp) also has such. Hence by the above theorem
A, must be finite. Moreover, since every vertex of G can be joined to
A, by a path each of whose edges is of finite index in the vertices
of the edge, each 4; must be finite.
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Conversely, suppose each 4; is finite. One shows by induction on
the number of vertices of G that there is a homomorphism of G onto
a finite group which is one-one on each 4, and that a normal sub-
group having trivial intersection with each A4; is free.

4. An analogous theorem for HNN groups.
LeMMA 3. Let G be an HNN group
(4) G = <t1, e ,t,-, K;rel K, tlthl_l = Ml, LR ,t,-LrM;-l = M.-)

Then any subgroup H of G which has trivial intersection with each
conjugate of K must be a free group.

Proor. Let X be the free group on xy, x, - + -, %, and Y the free
group on y1, ¥z, * - *, ¥~ Lhen
XxG=Y=*G
=((X*K)*(Y*K); K*x;Lyxt'* - - -= K*xyMyyrls- . -)

where t;=y7x; (see Higman, Neumann and Neumann [4] or [6]).
We show that the conjugates of H in X *G have trivial intersection
with X * K. Let & (#1) be an element of H, and let w be in X *G.
When whw1! is cyclically reduced as an element of X * G, an element
ghg~! with g&G results. On the other hand if whw '€EX * K, then
whw™! when cyclically reduced in X*G must yield an element of K,
contrary to H having trivial intersection with the conjugates of K in
G. Similarly, H has trivial intersection with the conjugates of ¥ *x K
in ¥ * G. Therefore by a theorem of H. Neumann (see [8] or [6]), H
is free.

THEOREM 2. Let G be an HNN group as in (4) where K is finitely
generated and each L;, M; is of finite index in K. Then G has a free
subgroup of finite index iff K is finite. In particular, G cannot be free.

Proor. Suppose first that K is finite. Then K can be embedded in
a finite group 2 (for example, the group of all permutations on the
elements of K) in such a way that the conjugate of L; by some ele-
ment s; in 2 is M; (see, for example corollary on p. 57 in Carmichael
[2], or Philip Hall's proof p. 537 in B. H. Neumann [7]). Map G
into 2 by sending K identically into itself in £ and mapping ¢;—s..
Then G is mapped homomorphically onto a finite group and the kernel
is a normal subgroup having trivial intersection with K, and hence
is free by Lemma 3.

Conversely, suppose that G has a free subgroup of finite index and
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hence a normal free subgroup H of finite index. Suppose K is infinite.
We first show that for each 7, L; or M; must equal K. For otherwise
the amalgamated product (K * ¢, Kt7'; M;=4#;L{7") is a subgroup of G
and hence possesses a free subgroup of finite index, contrary to
Theorem 1. Hence for each 1, either L; or M; equals K. We may there-
fore assume (replacing ¢; by ¢! if necessary) that K = M; for some .
Let Gi=gp(ti, K) and H;=G,\H. Then the groups #Kt;iMN\H;
=#(KMNH,)!7i form an ascending chain of free subgroups of the same
finite rank in H;. Hence for some j, §(KNH,)t;7/ =6+ (KNH,)i7+1,
so that KNH;=t;,(KNH;)t;7'. Therefore KMNH,; is normal in G; and
therefore normal in H;. But KM H; is finitely generated and is there-
fore of finite index in H; and hence of finite index in G;, contrary to
K being of infinite index in G;. Consequently K must be a finite group.
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