On the free product of two groups with an amalgamated subgroup of finite index in each factor
HTML articles powered by AMS MathViewer
- by A. Karrass and D. Solitar
- Proc. Amer. Math. Soc. 26 (1970), 28-32
- DOI: https://doi.org/10.1090/S0002-9939-1970-0263928-2
- PDF | Request permission
Abstract:
Let $G = (A \ast B;U)$ where $U$ is finitely generated and of finite index $\ne 1$ in both $A$ and $B$. We prove that $G$ is a finite extension of a free group iff $A$ and $B$ are both finite. In particular, this answers in the negative a question of W. Magnus as to whether or not $G$ can be free. Analogous results are obtained for tree products and HNN groups.References
- Gilbert Baumslag, On the residual finiteness of generalised free products of nilpotent groups, Trans. Amer. Math. Soc. 106 (1963), 193–209. MR 144949, DOI 10.1090/S0002-9947-1963-0144949-8
- Robert D. Carmichael, Introduction to the theory of groups of finite order, Dover Publications, Inc., New York, 1956. MR 0075938
- Marshall Hall Jr., Coset representations in free groups, Trans. Amer. Math. Soc. 67 (1949), 421–432. MR 32642, DOI 10.1090/S0002-9947-1949-0032642-4
- Graham Higman, B. H. Neumann, and Hanna Neumann, Embedding theorems for groups, J. London Math. Soc. 24 (1949), 247–254. MR 32641, DOI 10.1112/jlms/s1-24.4.247
- Abraham Karrass and Donald Solitar, On finitely generated subgroups of a free group, Proc. Amer. Math. Soc. 22 (1969), 209–213. MR 245655, DOI 10.1090/S0002-9939-1969-0245655-2
- A. Karrass and D. Solitar, The subgroups of a free product of two groups with an amalgamated subgroup, Trans. Amer. Math. Soc. 150 (1970), 227–255. MR 260879, DOI 10.1090/S0002-9947-1970-0260879-9
- B. H. Neumann, An essay on free products of groups with amalgamations, Philos. Trans. Roy. Soc. London Ser. A 246 (1954), 503–554. MR 62741, DOI 10.1098/rsta.1954.0007
- Hanna Neumann, Generalized free products with amalgamated subgroups, Amer. J. Math. 70 (1948), 590–625. MR 26997, DOI 10.2307/2372201
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 28-32
- MSC: Primary 20.52
- DOI: https://doi.org/10.1090/S0002-9939-1970-0263928-2
- MathSciNet review: 0263928