Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The big Picard theorem for polyanalytic functions
HTML articles powered by AMS MathViewer

by W. Bosch and P. Krajkiewicz
Proc. Amer. Math. Soc. 26 (1970), 145-150
DOI: https://doi.org/10.1090/S0002-9939-1970-0264096-3

Abstract:

Let $f,g$, and $h$ be polyanalytic in an annular neighborhood $A$ of a complex number ${z_0}$, finite or infinite, such that $g$ and $h$ do not have an essential singularity at ${z_0}$ and $g-h$ is not identically zero on $A$. It is shown that if $f-g$ and $f-h$ never vanish on $A$, then ${z_0}$ is not an essential singularity of $f$.
References
  • M. B. Balk, On the values taken by entire polyanalytic functions, Dokl. Akad. Nauk SSSR 167 (1966), 12–15 (Russian). MR 0199398
  • W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
  • P. Montel, Leçons sur les familles normales de fonctions analytiques et leurs applications, Gauthier-Villars, Paris, 1927.
  • Walter Saxer, Über eine Verallgemeinerung des Satzes von Schottky, Compositio Math. 1 (1935), 207–216 (German). MR 1556887
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30.61
  • Retrieve articles in all journals with MSC: 30.61
Bibliographic Information
  • © Copyright 1970 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 26 (1970), 145-150
  • MSC: Primary 30.61
  • DOI: https://doi.org/10.1090/S0002-9939-1970-0264096-3
  • MathSciNet review: 0264096