The big Picard theorem for polyanalytic functions
HTML articles powered by AMS MathViewer
- by W. Bosch and P. Krajkiewicz
- Proc. Amer. Math. Soc. 26 (1970), 145-150
- DOI: https://doi.org/10.1090/S0002-9939-1970-0264096-3
- PDF | Request permission
Abstract:
Let $f,g$, and $h$ be polyanalytic in an annular neighborhood $A$ of a complex number ${z_0}$, finite or infinite, such that $g$ and $h$ do not have an essential singularity at ${z_0}$ and $g-h$ is not identically zero on $A$. It is shown that if $f-g$ and $f-h$ never vanish on $A$, then ${z_0}$ is not an essential singularity of $f$.References
- M. B. Balk, On the values taken by entire polyanalytic functions, Dokl. Akad. Nauk SSSR 167 (1966), 12–15 (Russian). MR 0199398
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038 P. Montel, Leçons sur les familles normales de fonctions analytiques et leurs applications, Gauthier-Villars, Paris, 1927.
- Walter Saxer, Über eine Verallgemeinerung des Satzes von Schottky, Compositio Math. 1 (1935), 207–216 (German). MR 1556887
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 145-150
- MSC: Primary 30.61
- DOI: https://doi.org/10.1090/S0002-9939-1970-0264096-3
- MathSciNet review: 0264096