Finite operators
HTML articles powered by AMS MathViewer
- by J. P. Williams
- Proc. Amer. Math. Soc. 26 (1970), 129-136
- DOI: https://doi.org/10.1090/S0002-9939-1970-0264445-6
- PDF | Request permission
Abstract:
A bounded linear operator $A$ on a Hilbert space $H$ is called finite if $||AX - XA - 1|| \geqq 1$ for each $X \in B(H)$. The class of finite operators is uniformly closed, contains every normal operator, every operator with a compact direct summand, and the entire ${C^ \ast }$-algebra generated by each of its members. These results imply that the set of operators with a finite dimensional reducing subspace is not uniformly dense. It is also shown that the set of self-commutators is uniformly closed.References
- Arlen Brown and Carl Pearcy, Structure of commutators of operators, Ann. of Math. (2) 82 (1965), 112–127. MR 178354, DOI 10.2307/1970564
- Paul R. Halmos, Commutators of operators. II, Amer. J. Math. 76 (1954), 191–198. MR 59484, DOI 10.2307/2372409
- P. R. Halmos, Irreducible operators, Michigan Math. J. 15 (1968), 215–223. MR 231233
- C. R. Putnam, On commutators of bounded matrices, Amer. J. Math. 73 (1951), 127–131. MR 41357, DOI 10.2307/2372165
- Heydar Radjavi, Structure of $A^{\ast } A-AA^{\ast }$, J. Math. Mech. 16 (1966), 19–26. MR 0203482, DOI 10.1512/iumj.1967.16.16002
- Joseph G. Stampfli, The norm of a derivation, Pacific J. Math. 33 (1970), 737–747. MR 265952
- J. G. Stampfli, On hyponormal and Toeplitz operators, Math. Ann. 183 (1969), 328–336. MR 251571, DOI 10.1007/BF01350800
- J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebra, Tohoku Math. J. (2) 20 (1968), 417–424. MR 243352, DOI 10.2748/tmj/1178243070
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 129-136
- MSC: Primary 47.40
- DOI: https://doi.org/10.1090/S0002-9939-1970-0264445-6
- MathSciNet review: 0264445