GENERALIZED BALAYAGE AND A RADON-NIKODYM THEOREM

D. J. HEBERT, JR.¹

Abstract. A simplified proof is given of Doob's result that a balayage ordered collection of probability measures on a compact Hausdorff space \(K \) yields a \(K \)-valued supermartingale with the measures as marginal distributions. The proof shows further connections with martingale convergence theory.

The main theorem of a recent article by Doob [1] says that a balayage ordered collection of probability measures on a compact Hausdorff space \(K \) yields a \(K \)-valued supermartingale with the given measures as marginal distributions. The theorem requires no metrizability assumptions, but its proof uses a theorem of Meyer on dilations of measures on a compact metrizable space [3, p. 246]. The purpose of this note is to give a simple proof of a version of Doob's theorem avoiding metrizability arguments. Meyer's theorem is an easy corollary. A Radon-Nikodym-Metivier type lemma makes use of the Ionescu Tulcea lifting theorem and Helms' martingale convergence theorem (see [3]), both of which are consequences of Doob's original martingale theory.

Let \(K \) be a compact Hausdorff topological space, let \(C(K) \) be the Banach lattice of continuous real valued functions on \(K \) with the supremum norm, and let \(C(K)^* \) be the Banach lattice dual of \(C(K) \). The space \(C(K)^* \) is identified with the space of all signed regular Borel measures on \(K \), and for \(f \) in \(C(K) \) and \(\lambda \) in \(C(K)^* \) the notation \(\lambda(f) = \langle \lambda, f \rangle = \int f d\lambda \) is used interchangeably. The set of positive elements of norm 1 in \(C(K)^* \) is denoted by \(P(K) \). A mapping \(T \) of \(K \) into \(C(K)^* \) is said to be weakly \(\lambda \)-measurable whenever the function \(x \rightarrow \langle T(x), f \rangle \) is \(\sigma \)-measurable for each \(f \) in \(C(K) \). The following lemma is a variation of a Radon-Nikodym theorem of Metivier [2].

Lemma. Suppose that \(\lambda \) is in \(P(K) \) and \(\mathcal{F} \) is the \(\sigma \)-field of \(\lambda \)-measurable sets. If \(m \) is an additive function from \(\mathcal{F} \) into the positive cone of \(C(K)^* \) such that \(|\langle m(E), f \rangle| \leq \|f\| \cdot \lambda(E) \) and \(\langle m(K), 1 \rangle = 1 \), then there is a

¹ The author would like to thank Professor J. L. Doob for several comments.
A weakly λ-measurable function T from K into $P(K)$ such that for each E in \mathcal{F} and for each f in $C(K)$,

$$\langle m(E), f \rangle = \int_E \langle T(x), f \rangle \lambda(dx).$$

Proof. For each f in $C(K)$, for each x in K, and for each finite partition π of \mathcal{F} define $T(\pi, x, f) = \langle m(E), f \rangle / (\mathcal{E})$ where \mathcal{E} is the member of π containing x. If \mathcal{F}_x denotes the Boolean algebra generated by π, the collection $\{ T(\pi, x, f), \mathcal{F}_x \}$ forms a bounded martingale for each f. By a theorem of Helms (see [3, p. 86]), the martingale converges in $L^1(K, \mathcal{F}, \lambda)$ to an integrable function T, which is clearly bounded by $||f||$. The mapping $f \mapsto T$ is a bounded linear mapping of $C(K)$ into $L^\infty(K, \mathcal{F}, \lambda)$. Let ρ be a lifting of $L^\infty(K, \mathcal{F}, \lambda)$. The mapping T defined by $\langle T(x), f \rangle = [\rho(T)](x)$, for each f and x, is the desired function.

Theorem. Let S be a cone in $C(K)$ closed under the lattice operation \wedge and containing the constant functions. If μ and λ are members of $P(K)$ such that $\mu(h) \leq \lambda(h)$ for each h in S, then there is a weakly λ-measurable mapping T from K into $P(K)$ such that

$$\mu(f) = \int_K \langle T(x), f \rangle \lambda(dx) \quad \text{for } f \text{ in } C(K),$$

and

$$\int_E \langle T(x), h \rangle \lambda(dx) \leq \int_E h(x) \lambda(dx)$$

for each h in S and for each λ-measurable set E.

Proof. For each f in $C(K)$ let $f^*(x) = \inf \{ h(x) : h \geq f, \ h \in S \}$. Properties of this function are given in [3]. Among these are the following: the equation $s(f) = \int f^*(x) \lambda(dx)$ defines a sublinear functional s on $C(K)$, and since λ dominates μ on S, s dominates μ on $C(K)$. Let B be the normed linear space of equivalence classes of λ-measurable simple functions from K to $C(K)$. The space $C(K)$ can be identified with the λ-almost everywhere constant functions. The functional s can be extended to a sublinear functional s^* on B defined by the equation $s^*(g) = \int g(x)^* \lambda(dx)$. By the Hahn-Banach theorem there is a linear functional μ^* dominated by s^* which extends μ to all of B. For a subset E of K and for f in $C(K)$ let Ef denote the function whose values are f on E and 0 outside E. Thus $\mu^*(Ef) \leq s^*(Ef) = \int_{Ef} f^*(x) \lambda(dx)$ for f in $C(K)$ and for λ-measurable E.
The function m defined by the equation $\langle m(E), f \rangle = \mu^*(Ef)$ satisfies the hypotheses of the lemma. The resulting function T is the one required to conclude the proof.

The function T considered as a transition probability on K can be used to define a product measure P on $K_1 \times K_2 = K \times K$. If $f(x, y)$ is a continuous function on $K \times K$ and $f_z(y) = f(x, y)$, then $P(f) = \int (T(x), f_z) \lambda(dx)$, so that λ and μ are the natural projections of P onto K_1 and K_2 respectively. Further, if X_i is the ith coordinate function of a point X in $K_1 \times K_2$ and E is a Borel subset of K then

$$\int_{E \times K} h(X_1) dP = \int_E h(x) \lambda(dx) \geq \int \langle T(x), h \rangle \lambda(dx) = \int_{B \times K} h(X_2) dP.$$

Thus if \mathcal{F}_2 is the σ-field of Borel sets of $K \times K$ and \mathcal{F}_1 is composed of sets of the form $E \times K$ where E is a Borel subset of K, then $\{(h(X_i), \mathcal{F}_i) : i = 1, 2\}$ is a supermartingale. This argument is easily extended to finite and then to arbitrary index sets to produce the following

Corollary (Doob). Suppose that I is an ordered set and $\{\lambda_i : i \in I\}$ is a collection of members of $P(K)$ such that $i \leq j$ if and only if $\lambda_i(h) \geq \lambda_j(h)$ for each h in S. There is a probability space (Ω, \mathcal{F}, P), a family $\{X_i : i \in I\}$ of \mathcal{F}-measurable functions, and a family $\{\mathcal{F}_i : i \in I\}$ of sub-σ-fields of \mathcal{F} such that $\{(h(X_i), \mathcal{F}_i) : i \in I\}$ is a supermartingale for each h in S and λ_i is the distribution of X_i for each i in I.

If K is metrizable, then T can be redefined as a Borel measurable function such that $\langle T(x), h \rangle \geq h(x)$ for each x in K and h in S. This is Meyer's theorem.

References

