Trace-class for an arbitrary $H^{\ast }$-algebra
HTML articles powered by AMS MathViewer
- by Parfeny P. Saworotnow and John C. Friedell
- Proc. Amer. Math. Soc. 26 (1970), 95-100
- DOI: https://doi.org/10.1090/S0002-9939-1970-0267402-9
- PDF | Request permission
Abstract:
Let $A$ be a proper ${H^ \ast }$-algebra and let $\tau (A)$ be the set of all products $xy$ of members $x,y$ of $A$. Then $\tau (A)$ is a normed algebra with respect to some norm $\tau (\;)$ which is related to the norm $||\;||$ of $A$ by the equality: $||a|{|^2} = \tau (a^ \ast a),a \in A$. There is a trace tr defined on $\tau (A)$ such that $\operatorname {tr} (a) = \sum \nolimits _\alpha {(a{e_\alpha },{e_\alpha })}$ for each $a \in \tau (A)$ and each maximal family $\{ {e_\alpha }\}$ of mutually orthogonal projections in $A$. The trace is related to the scalar product of $A$ by the equality: $\operatorname {tr} (xy) = (x,{y^ \ast }) = (y,{x^ \ast })$ for all $x,y \in A$.References
- Warren Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364–386. MR 13235, DOI 10.1090/S0002-9947-1945-0013235-8
- C. N. Kellogg, Centralizers and $H^{\ast }$-algebras, Pacific J. Math. 17 (1966), 121–129. MR 193529, DOI 10.2140/pjm.1966.17.121
- Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. MR 0054173
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101
- Robert Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 27, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0119112, DOI 10.1007/978-3-642-87652-3
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 95-100
- MSC: Primary 46.60
- DOI: https://doi.org/10.1090/S0002-9939-1970-0267402-9
- MathSciNet review: 0267402