Tree-like continua and cellularity
HTML articles powered by AMS MathViewer
- by R. Richard Summerhill
- Proc. Amer. Math. Soc. 26 (1970), 201-205
- DOI: https://doi.org/10.1090/S0002-9939-1970-0275375-8
- PDF | Request permission
Abstract:
In this paper the equivalence of tree-like and cellular is proved for $1$-dimensional continua in ${E^n}$. More precisely, if $X$ is a tree-like continuum, then the collection of all embeddings $h:X \to {E^n},n \geqq 3$, such that $h[X]$ is cellular in ${E^n}$ is a dense ${G_\delta }$-subset of the collection of all maps from $X$ into ${E^n}$. Conversely, if $X$ is a $1$-dimensional cellular subset of ${E^n}$, then $X$ is a tree-like continuum.References
- Steve Armentrout, $\textrm {UV}$ properties of compact sets, Trans. Amer. Math. Soc. 143 (1969), 487–498. MR 273573, DOI 10.1090/S0002-9947-1969-0273573-7
- J. H. Case and R. E. Chamberlin, Characterizations of tree-like continua, Pacific J. Math. 10 (1960), 73–84. MR 111000
- John G. Hocking and Gail S. Young, Topology, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961. MR 0125557
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- D. R. McMillan Jr., A criterion for cellularity in a manifold, Ann. of Math. (2) 79 (1964), 327–337. MR 161320, DOI 10.2307/1970548
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 201-205
- MSC: Primary 54.55
- DOI: https://doi.org/10.1090/S0002-9939-1970-0275375-8
- MathSciNet review: 0275375