Linear perturbations of ordinary differential equations
HTML articles powered by AMS MathViewer
- by Aaron Strauss and James A. Yorke
- Proc. Amer. Math. Soc. 26 (1970), 255-260
- DOI: https://doi.org/10.1090/S0002-9939-1970-0259278-0
- PDF | Request permission
Abstract:
We present several results dealing with the problem of the preservation of the stability of a system $x’ = A(t)x$ which is subject to linear perturbations $B(t)x$, or to perturbations dominated by linear ones.References
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR 0069338
- W. A. Coppel, Stability and asymptotic behavior of differential equations, D. C. Heath and Company, Boston, Mass., 1965. MR 0190463
- C. Corduneanu, Sur la stabilité asymptotique, An. Şti. Univ. “Al. I. Cuza” Iaşi Secţ. I (N.S.) 5 (1959), 37–40 (French, with Romanian and Russian summaries). MR 113007
- A. Ju. Levin, Passage to the limit for nonsingular systems $\dot X=A_{n}(t)X.$, Dokl. Akad. Nauk SSSR 176 (1967), 774–777 (Russian). MR 0227556
- Aaron Strauss and James A. Yorke, Perturbation theorems for ordinary differential equations, J. Differential Equations 3 (1967), 15–30. MR 203176, DOI 10.1016/0022-0396(67)90003-4
- Zdzisław Opial, Continuous parameter dependence in linear systems of differential equations, J. Differential Equations 3 (1967), 571–579. MR 216056, DOI 10.1016/0022-0396(67)90017-4
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 255-260
- MSC: Primary 34.53
- DOI: https://doi.org/10.1090/S0002-9939-1970-0259278-0
- MathSciNet review: 0259278