A geometric proof of Markov ergodic theorem
HTML articles powered by AMS MathViewer
- by R. Z. Yeh
- Proc. Amer. Math. Soc. 26 (1970), 335-340
- DOI: https://doi.org/10.1090/S0002-9939-1970-0263166-3
- PDF | Request permission
Abstract:
A geometric approach combined with topological results leads to a criterion for ergodic stability of Markov transformations. The matrix representation of this criterion provides an alternative proof for the well-known theorem of Markov in probability.References
- A. A. Markov, Investigation of a noteworthy case of dependent trials, Izv. Ros. Akad. Nauk 1 (1907) (Russian) or B. V. Gnedenko, Course in the theory of probability, Fizmatgiz, Moscow, 1961; English transl., Chelsea, New York, 1962, pp. 142-145. MR 25 #2622.
- V. Borovikov, On the intersection of a sequence of simplexes, Uspehi Matem. Nauk (N.S.) 7 (1952), no. 6(52), 179–180 (Russian). MR 0053505 F. R. Gantmacher, The theory of matrices, GITTL, Moscow, 1953; English transl., Vol. 2, Chelsea, New York, 1959, pp. 50-93. MR 16, 438; MR 21 #6372c. R. Z. Yeh, On the effect of an affine transformation on a certain $k$-convex set, (to appear).
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 335-340
- MSC: Primary 60.65
- DOI: https://doi.org/10.1090/S0002-9939-1970-0263166-3
- MathSciNet review: 0263166