A generalization of a theorem of P. Montel on entire functions
HTML articles powered by AMS MathViewer
- by Chung-chun Yang
- Proc. Amer. Math. Soc. 26 (1970), 332-334
- DOI: https://doi.org/10.1090/S0002-9939-1970-0264080-X
- PDF | Request permission
Abstract:
This paper investigates the functional equation $a(z){f^n}(z) + b(z){g^m}(z) = 1$ ($a,b,f,g$ meromorphic).References
- Fred Gross, On the equation $f^{n}+g^{n}=1$, Bull. Amer. Math. Soc. 72 (1966), 86–88. MR 185125, DOI 10.1090/S0002-9904-1966-11429-5
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- A. V. Jategaonkar, Elementary proof of a theorem of P. Montel on entire functions, J. London Math. Soc. 40 (1965), 166–170. MR 170007, DOI 10.1112/jlms/s1-40.1.166 P. Montel, Leçons sur les familles normales, Gauthier-Villars, Paris, 1927, pp. 135-136.
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 332-334
- MSC: Primary 30.55
- DOI: https://doi.org/10.1090/S0002-9939-1970-0264080-X
- MathSciNet review: 0264080