The Hardy class of a spiral-like function and its derivative
HTML articles powered by AMS MathViewer
- by T. Başgöze and F. R. Keogh
- Proc. Amer. Math. Soc. 26 (1970), 266-269
- DOI: https://doi.org/10.1090/S0002-9939-1970-0264084-7
- PDF | Request permission
Abstract:
A determination is made of the Hardy classes to which a spiral-like univalent function and its derivative belong. An estimate for the size of the Taylor coefficients is deduced.References
- P. J. Eenigenburg and F. R. Keogh, The Hardy class of some univalent functions and their derivatives, Michigan Math. J. 17 (1970), 335–346. MR 306505, DOI 10.1307/mmj/1029000519
- G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), no. 1, 403–439. MR 1545260, DOI 10.1007/BF01180596
- Richard J. Libera, Univalent $\alpha$-spiral functions, Canadian J. Math. 19 (1967), 449–456. MR 214750, DOI 10.4153/CJM-1967-038-0
- Bernard Pinchuk, On starlike and convex functions of order $\alpha$, Duke Math. J. 35 (1968), 721–734. MR 230896 L. Špaček, Contribution à la théorie des fonctions univalentes, Časopis. Pešt. Mat. 62 (1933), 12-19.
- M. S. Robertson, Univalent functions $f(z)$ for which $zf^{\prime } (z)$ is spirallike, Michigan Math. J. 16 (1969), 97–101. MR 244471, DOI 10.1307/mmj/1029000208
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 266-269
- MSC: Primary 30.67
- DOI: https://doi.org/10.1090/S0002-9939-1970-0264084-7
- MathSciNet review: 0264084