OSCILLATION CRITERIA FOR NONLINEAR MATRIX DIFFERENTIAL EQUATIONS

KURT KREITH

Abstract. Oscillation criteria are established for nonlinear matrix differential equations of the form $[R(t)U']' + F(t, U, U') = 0$. These criteria are more general than some similar ones of E. C. Tomastik insofar as they do not require F to be positive definite.

In [1] Tomastik derives oscillation criteria for nonlinear matrix differential equations of the form

$$[R(t)U']' + F(t, U, U')U = 0$$

under the hypothesis that the matrix F is positive definite. The purpose of this note is to present an oscillation criterion for (1) which does not require such an assumption.

As in [1] we consider a “prepared” solution $U(t)$ of (1) satisfying

$$U^*(t)R(t)U'(t) = U^*(t)R(t)U(t),$$

and say that (1) is oscillatory on $[a, \infty)$ if the determinant of every prepared solution has arbitrarily large zeros. Our assumptions regarding the coefficient matrices are as in [1]. In particular, R and F are to be sufficiently regular, symmetric and real $n \times n$ matrices, and $R(t)$ is to be positive definite for all t.

The oscillation criterion to be derived below depends on a comparison of solutions of (1) and an equation of the same type,

$$[P(t)V']' + G(t, V, V')V = 0.$$

Lemma 1. Let $U(t)$ be a prepared matrix solution of (1) such that

$$\det U(t) \neq 0$$

on some interval $[b, c]$, and let $S(t) = R(t)U'(t)U^{-1}(t)$. If $V(t)$ satisfies (3) on $[b, c]$, then

$$[V^*P' - V^*S]_{t=b}^{t=c} = \int_{b}^{c} V^*(F - G)V' dt + \int_{b}^{c} V^*(P - R)V' dt$$

$$+ \int_{b}^{c} (V' - U'U^{-1}V)^*R(V' - U'U^{-1}V) dt.$$

Proof. If $\det U(t) \neq 0$, then a direct computation using (2) and the
fact that \(U^{-1} = -U^{-1}U'U^{-1} \) yields the following Picone-type identity
\[
(V^*PV' - V^*RU'U^{-1}V)' = V^*(PV')' - V^*(RU')'U^{-1}V + V^*(P - R)V' + (V' - U'U^{-1}V)^*R(V' - U'U^{-1}V).
\]

Substituting (1) and (3) for the first two terms on the right side of this equation and integrating, (4) follows readily.

Lemma 2. Suppose \(V(t) \) is a nontrivial solution of (3) satisfying

(i) \(V^*(t) [F(t, U, U') - G(t, U, U')] V(t) \) is positive semidefinite for \(b \leq t \leq c \) and all values of \(U \) and \(U' \),

(ii) \(V^*(t) [P(t) - R(t)] V(t) \) is positive semidefinite for \(b \leq t \leq c \),

(iii) \(F(b) = F(c) = 0 \).

If \(U(t) \) is a prepared solution of (1), then \(\det U(t) \) has a zero in \([b, c] \).

Proof. If \(\det U(t) \neq 0 \) in \([b, c] \), then (4) holds and our hypotheses assure that the left side of (4) is 0 while each term on the right side of (4) is positive semidefinite. Furthermore, the last term on the right side of (4) is zero if and only if \(V' - U'U^{-1}V = 0 \) on \([b, c] \), and this requires \(V'(b) = 0 \). By the uniqueness theorem for matrix systems, \(V(b) = V'(b) = 0 \) implies \(V(t) = 0 \), contradicting the hypotheses and showing that \(\det U(t) = 0 \) for some \(t \) in \([b, c] \).

Our oscillation criteria for (1) now follow easily by comparing (1) with the linear matrix equation
\[
(3') \quad [p(t)IV']' + g(t)IV = 0.
\]

Let \(J \) be a nonzero matrix with zeros and ones down the main diagonal and zeros elsewhere.

Theorem. If the Sturm-Liouville equation \((p(t)v')' + g(t)v = 0 \) is oscillatory at \(t = \infty \), and if for some real \(a \) and some \(J \)

(i) \(J [F(t, U, U') - g(t)I] J \) is positive semidefinite for \(t \geq a \) and all values of \(U \) and \(U' \),

(ii) \(J [p(t)I - R(t)] J \) is positive semidefinite for \(t \geq a \), then (1) is oscillatory on \([a, \infty) \).

Proof. Let \(v(t) \) be a nontrivial solution of \((p(t)v')' + g(t)v = 0 \) which is oscillatory at \(\infty \) and define \(V(t) = v(t)J \). Then \(V(t) \) satisfies \((3') \), and we can find arbitrarily large pairs of numbers \((b, c) \) satisfying \(c > b > a \) for which \(V(b) = V(c) = 0 \). Furthermore
\[
V^*[F - gI]V = v^*J[F - gI]J \quad \text{and} \quad V^*[pI - R]V' = v'^*J[pI - R]J
\]
so that conditions (i) and (ii) of Lemma 2 are satisfied on \([a, \infty) \). By Lemma 2, equation (1) is oscillatory on \([a, \infty) \).
In order to apply this Theorem, it is useful to recall the Leighton oscillation criterion: if

$$\int^{\infty}_{0} \frac{1}{p(t)} \, dt = \int^{\infty}_{0} g_1(t) \, dt = \infty,$$

then \((p_1v)' + g_1v = 0\) is oscillatory at \(t = \infty\). Consider now the system (1) where \(n = 2\) and

$$0 < R(t) \equiv \begin{pmatrix} p_1(t) & 0 \\ 0 & p_2(t) \end{pmatrix}, \quad F(t, U, U') \equiv \begin{pmatrix} g_1(t) & 0 \\ 0 & g_2(t) \end{pmatrix}.$$

According to the Theorem with

$$J = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$

if (5) is satisfied then (1) is oscillatory. This result does not follow from [1].

REFERENCES

UNIVERSITY OF CALIFORNIA, DAVIS, CALIFORNIA 95616