On the relation between the Abel-type and Borel-type methods of summability
HTML articles powered by AMS MathViewer
- by B. L. R. Shawyer and G. S. Yang
- Proc. Amer. Math. Soc. 26 (1970), 323-328
- DOI: https://doi.org/10.1090/S0002-9939-1970-0264276-7
- PDF | Request permission
Abstract:
In recent papers, R. Jajte and B. L. R. Shawyer have proved that under certain conditions a series summable by a Borel-type or absolute Borel-type method of summability is also summable by the Abel or absolute Abel method of summability to the same sum. In the present paper, the Abel method is replaced by the more general Abel-type method, giving similar results for ordinary, strong and absolute summability.References
- D. Borwein, On methods of summability based on integral functions. II, Proc. Cambridge Philos. Soc. 56 (1960), 125–131. MR 116162
- D. Borwein, On a scale of Abel-type summability methods, Proc. Cambridge Philos. Soc. 53 (1957), 318–322. MR 86158
- David Borwein and Bruce Lockhart Robertson Shawyer, On Borel-type methods, Tohoku Math. J. (2) 18 (1966), 283–298. MR 212440, DOI 10.2748/tmj/1178243418
- Gustav Doetsch, Über den Zusammenhang zwischen Abelscher und Borelscher Summabilität, Math. Ann. 104 (1931), no. 1, 403–414 (German). MR 1512677, DOI 10.1007/BF01457948
- R. Jajte, On the compositions of integral means with Borel methods of summability, Ann. Polon. Math. 14 (1963/64), 101–116. MR 159166, DOI 10.4064/ap-14-2-101-116
- Babban Prasad Mishra, Strong summability of infinite series on a scale of Abel type summability methods, Proc. Cambridge Philos. Soc. 63 (1967), 119–127. MR 203303, DOI 10.1017/s0305004100040950
- Babban Prasad Mishra, Absolute summability of infinite series on a scale of Abel type summablility methods, Proc. Cambridge Philos. Soc. 64 (1968), 377–387. MR 222513, DOI 10.1017/s0305004100042924 S. J. H. Rizvi, Abel-type summability, Ph.D. Thesis, Univ. of Western Ontario, 1969.
- B. L. R. Shawyer, On the relation between the Abel and Borel-type methods of summability, Proc. Amer. Math. Soc. 22 (1969), 15–19. MR 243228, DOI 10.1090/S0002-9939-1969-0243228-9
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 323-328
- MSC: Primary 40.33
- DOI: https://doi.org/10.1090/S0002-9939-1970-0264276-7
- MathSciNet review: 0264276