Semiuniform spaces and topological homeomorphism groups
HTML articles powered by AMS MathViewer
- by R. V. Fuller
- Proc. Amer. Math. Soc. 26 (1970), 365-368
- DOI: https://doi.org/10.1090/S0002-9939-1970-0264595-4
- PDF | Request permission
Abstract:
A well-known sufficient condition that a group of homeomorphisms, $H$, from a topological space $X$ onto itself be a topological group relative to the topology of pointwise convergence is that $X$ be uniformizable and $H$ be equicontinuous. In this paper we prove an analogous condition in which the space $X$ is assumed to be only regular instead of completely regular (uniformizable). This is accomplished by means of the concepts of semiuniformity and semiequicontinuity introduced here.References
- Nicolas Bourbaki, Elements of mathematics. General topology. Part 1, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR 0205210
- Taqdir Husain, Introduction to topological groups, W. B. Saunders Co., Philadelphia, Pa.-London, 1966. MR 0200383
- S. K. Kaul, Compact subsets in function spaces, Canad. Math. Bull. 12 (1969), 461–466. MR 257967, DOI 10.4153/CMB-1969-057-9
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 365-368
- MSC: Primary 54.30
- DOI: https://doi.org/10.1090/S0002-9939-1970-0264595-4
- MathSciNet review: 0264595