On noninvertible links with invertible proper sublinks
HTML articles powered by AMS MathViewer
- by W. C. Whitten
- Proc. Amer. Math. Soc. 26 (1970), 341-346
- DOI: https://doi.org/10.1090/S0002-9939-1970-0264647-9
- PDF | Request permission
Abstract:
The title supports the primary objective of this paper. Specifically, for each $\mu \geqq 3$, a noninvertible, oriented, ordered link of $\mu$ components tamely imbedded in ${S^3}$ is exhibited with the property that each proper sublink is invertible. The case $\mu = 2$ has been covered in a previous paper.References
- M. Dehn, Über die Topologie des dreidimensionalen Raumes, Math. Ann. 69 (1910), no. 1, 137–168 (German). MR 1511580, DOI 10.1007/BF01455155
- Ralph H. Fox, Free differential calculus. II. The isomorphism problem of groups, Ann. of Math. (2) 59 (1954), 196–210. MR 62125, DOI 10.2307/1969686
- Ralph H. Fox, Covering spaces with singularities, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N.J., 1957, pp. 243–257. MR 0123298
- R. H. Fox, A quick trip through knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120–167. MR 0140099 E. R. van Kampen, On the connection between the fundamental groups of some related spaces, Amer. J. Math. 55 (1933), 261-267.
- C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1–26. MR 90053, DOI 10.2307/1970113 O. Schreier, Über die Gruppen ${A^a}{B^b} = 1$, Abh. Math. Sem. Univ. Hamburg 3 (1924), 167-169.
- H. F. Trotter, Non-invertible knots exist, Topology 2 (1963), 275–280. MR 158395, DOI 10.1016/0040-9383(63)90011-9
- W. C. Whitten Jr., A pair of non-invertible links, Duke Math. J. 36 (1969), 695–698. MR 253317
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 341-346
- MSC: Primary 55.20
- DOI: https://doi.org/10.1090/S0002-9939-1970-0264647-9
- MathSciNet review: 0264647