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Abstract. This paper is concerned with the question of the

existence of periodic solutions of periodic linear second order

differential equations with deviating argument. Using a fixed

point theorem for multivalued mappings and results concerning

boundary value problems for such equations, we prove that the

existence of periodic solutions of both types of differential in-

equalities implies the existence of periodic solutions. This result, in

turn, is used to obtain the existence of periodic solutions of certain

nonlinear differential equations with deviating argument.

1. Consider the second order differential equation with deviating

argument

(1)    Lxit) = x"(t) + a(t)x'(t) + bit)x(t) + dt)x(t - d(t)) = e(t),

where ait), bit), c(t), dit), and e(t) are continuous real-valued func-

tions which are periodic of period P>0, and c(t) 2:0. (No restrictions

on the sign of dit) are made.) In this paper we give sufficient condi-

tions under which equation (1) has a solution 3t(i)GC'(- », »)

which is periodic of period P. Our main theorem, which is a mean

value type theorem for the operator L, takes the following form.

Theorem 1. Let there exist functions a(í),(3(í)GC!(-°°, ») which

are periodic of period T, such that

ait) g ß(t)    and    Lß(t) = e(t) = La(t).

Then there exists a periodic solution x(t) of (1) such that a(t)^x(t)

£ß(t).

The theorem is proved by using existence results for boundary

value problems for nonlinear second order differential equations

with deviating arguments established in [2] and [3] and a special

case of a fixed point theorem for multivalued maps due to Eilenberg

and Montgomery [l]. The proof proceeds via several lemmas given

in the next section.
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2. Let P denote the set of all real continuous functions of period

Pand for 0GP, let

||*|| =   max   |*(/)|.

Then (P, || • ||) is a Banach space (P, of course may be identified

with that subspace of C[0, T] consisting of all those continuous func-

tions M) such that ^(0) =iKP)). If a, ßEP such that a(t)g,ß(t),

0^/^P, we denote by [a, ß] the set

[a,ß] = {<t>E P:«(0 á <Kt) ú ß(t), i G [0, r]}.

Consider the following boundary value problem

(2) Lx(t) = e(i),    t E [0, T],

(3) x(t) = <¡>(í),    t G (0, T),

where cb&P-

As a special case of Theorem 9 of [3] we have the following:

Lemma 1. Let a, ßEP such that a(t) g,ß(l) and Lß(t) ^e(l) úLa(t),

tE [0, T]. Then for any <j>E[<x, ß] there exists a solution x(t) of (2),

(3) such that xE [o¿, ß]- Furthermore there exists a constant N depending

on a, ß and L such that |x'(/)| 1JV, tE [0, P].

Remark. We point out that a solution of (2), (3) is a solution of

(1) only on the interval [O, T], outside that interval it coincides

with the preassigned function <b.

Let a and ß be as in Lemma 1. For each <¡>E[o¿, ß] denote by S(<b)

the set of all solutions x(t) of (2), (3) such thatxG [«, ß]-

Lemma 2. For each <f>E [a, ß], S(<b) is a convex subset of [a, ß].

Proof. This follows from the linearity of equation (1).

Lemma 3. The multivalued map S is continuous in the following

sense: If {<p„} and {^n\ are sequences in [a, ß] such that ||*„—*||—>0

and ll'r'n— '/'H—*0 as n-+ &,\l/nES(<bn), then\f/ES(<p).

Proof. By Lemma 1, the set U {S(4>):cj)E [a, ß]} is a uniformly

bounded and equicontinuous subset of [a, jSj. Since \¡/n is a solution of

the boundary value problem

Lx(t) = e(t),  t e [o, r],     x(t) = <t>n(t),  t G (o, r),

it follows that {\¡/'n} is also uniformly bounded and equicontinuous

on [0, P]. It now easily follows that \pES(<f>).

Define the set M(r) by
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M(r) = {<t>G [a,ß]'.4> G C»[0, T],<b(0) = | *'(/) |  g N, t G [0, 7]}.

A7(r) is a compact convex subset of P and by Lemma 1, Si<p)GMir)

for every <pGM(r).

Lemma 4. PAe multivalued map S:M(r)—>Mir) has a fixed point

in M(r), i.e. there exists cpGM(r) such that <¡>GSi<j>).

Proof. This follows from Lemmas 1, 2, 3, the fixed point theorem

of Eilenberg and Montgomery [l, Theorem l] and the observation

that every compact convex subset of a Banach space is an absolute

neighborhood retract and is acyclic (see Lefschetz [4, p. 119, proof

of 29.1]).

It is now an easy matter to verify that there exists r, a(0) :Sr ^/3(0),

such that some fixed point <p of the mapping 5 on Mir) has the prop-

erty that its periodic extension is a solution of (1) on (— », »). This

completes the proof of Theorem 1.

Remark. If it is known that boundary value problems of type (2),

(3) have at most one solution, we may, of course, apply the Schauder

fixed point theorem to conclude the existence of a periodic solution.

However, in many cases (even if dit)=0) uniqueness fails and more-

over uniqueness in general is difficult to check particularly when dit)

changes sign, i.e. when (1) is an equation of neutral type.

As an application of Theorem 1, consider the following equation

(4) x"(t) + ait)x'it) - bxit) + exit - dit)) = eil),

where, as before, ait), dit) and e(¿) are continuous and periodic of

period P and b and c are positive constants such that b>c. In this

case, we may choose ß to be a positive constant such that

(5) (c - b)ß = e(t),   t G [0, T],

and a negative such that

(6) (c - b)a = e(t),    t G [0, r].

We conclude that there exists a periodic solution x(t) of (4) such that

a£x(f)£ß.

3. In applying Lemma 1 to equation (4), we note that the constant

N is also independent of the deviating argument dit). This observa-

tion makes it possible to conclude the existence of a periodic solution

of the nonlinear equation

(7) Lx(t) = x"il) + aiOx'il) - bx(t) + exit - dit, x(l))) = e(l).
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Theorem 2. Let a(t) and e(t) be continuous functions which are

periodic of period T and let b and c be positive constants with b>c. Let

ß and a be as in (5) and (6) and let d(t, x) be periodic in t of period T

and continuous in (t, x), a^x^ß. Then there exists a periodic solution

of (7) such that a^x(t) ¿ß.

Proof. Let M= {<bE[a, j3]:*GC2(-oo, »), \<b'(t)\ g>N}. Then

M is a compact convex subset of P. For each cj>EM consider the

equation

(8) x"(t) + a(t)x'(t) - bx(t) + cx(t - d(t, 4>(t))) = e(l).

By Theorem 1, there exists a periodic solution x(t) of (8) such that

xEM. Denote by S(<f>) the set of all such periodic solutions of (8).

As before one may easily verify that the multivalued map S has a

fixed point. Fixed points of 5 are solutions of (7).

Remark. Several variations of Theorem 2 are possible, one may

for example replace e(t) by a possibly nonlinear function e(t, x),

periodic in I of period P, continuous in (t, x) and bounded. Also the

operator L in (1) and (7) may contain several different terms con-

taining a deviating argument as long as the coefficient of each such

term is nonnegative.

Theorems 1 and 2 may also be extended to the nonlinear

equations

x"(t)=f(t, x(t), x'(t), x(t-d(t)))

and

x"(t)=f(t, x(t), x'(t), x(t-d(t, x(t)))),

provided we make the additional assumption that boundary value

problems for such equations have at most one solution.
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