The hyperquasicenter of a finite group. I
HTML articles powered by AMS MathViewer
- by N. P. Mukherjee
- Proc. Amer. Math. Soc. 26 (1970), 239-243
- DOI: https://doi.org/10.1090/S0002-9939-1970-0268267-1
- PDF | Request permission
Abstract:
The quasicenter is a generalisation of the idea of the center of a group and this has been used to define the hyperquasicenter. The concept that is essentially involved is that of quasinormality. The quasicenter has been shown to be nilpotent and the hyperquasicenter has been identified as the largest supersolvably immersed subgroup.References
- Reinhold Baer, The hypercenter of a group, Acta Math. 89 (1953), 165–208. MR 58595, DOI 10.1007/BF02393006
- Reinhold Baer, Das Hyperzentrum einer Gruppe. II, Arch. Math. (Basel) 4 (1953), 86–96 (German). MR 58596, DOI 10.1007/BF01899667
- Reinhold Baer, Das Hyperzentrum einer Gruppe. III, Math. Z. 59 (1953), 299–338 (German). MR 59906, DOI 10.1007/BF01180263
- Reinhold Baer, Das Hyperzentrum einer Gruppe. IV, Arch. Math. 5 (1954), 56–59 (German). MR 61109, DOI 10.1007/BF01899318
- Reinhold Baer, Group elements of prime power index, Trans. Amer. Math. Soc. 75 (1953), 20–47. MR 55340, DOI 10.1090/S0002-9947-1953-0055340-0
- Reinhold Baer, Principal factors, maximal subgroups and conditional identities of finite groups, Illinois J. Math. 13 (1969), 1–52. MR 237652
- W. E. Deskins, On quasinormal subgroups of finite groups, Math. Z. 82 (1963), 125–132. MR 153738, DOI 10.1007/BF01111801
- N. Itô and J. Szép, Über die Quasinormalteiler von endlichen Gruppen, Acta Sci. Math. (Szeged) 23 (1962), 168–170 (German). MR 138676
- Michio Suzuki, Structure of a group and the structure of its lattice of subgroups, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 10, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956. MR 0083487
- Helmut Wielandt, Über das Produkt paarweise vertauschbarer nilpotenter Gruppen, Math. Z. 55 (1951), 1–7 (German). MR 45715, DOI 10.1007/BF01212663
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 239-243
- MSC: Primary 20.25
- DOI: https://doi.org/10.1090/S0002-9939-1970-0268267-1
- MathSciNet review: 0268267