Stable homotopy theory is not self-dual
HTML articles powered by AMS MathViewer
- by J. M. Boardman
- Proc. Amer. Math. Soc. 26 (1970), 369-370
- DOI: https://doi.org/10.1090/S0002-9939-1970-0268887-4
- PDF | Request permission
Abstract:
The classical Spanier-Whitehead duality for finite complexes shows that the finite stable homotopy category is selfdual. We prove that in the larger stable categories, duality is not consistent with the standard arguments of homotopy theory.References
- J. M. Boardman, Stable homotopy theory, University of Warwick, November 1965 (mimeograph).
- E. H. Spanier, Duality and $\textrm {S}$-theory, Bull. Amer. Math. Soc. 62 (1956), 194–203. MR 85506, DOI 10.1090/S0002-9904-1956-10014-1
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 369-370
- MSC: Primary 55.40
- DOI: https://doi.org/10.1090/S0002-9939-1970-0268887-4
- MathSciNet review: 0268887