Bounded in the mean solutions of $\triangle u=Pu$ on Riemannian manifolds
HTML articles powered by AMS MathViewer
- by Kwang-nan Chow and Moses Glasner
- Proc. Amer. Math. Soc. 26 (1970), 261-265
- DOI: https://doi.org/10.1090/S0002-9939-1970-0271871-8
- PDF | Request permission
Abstract:
Let $\Phi$ be a convex positive increasing function and $d = {\lim _{t \to \infty }}\Phi (t)/t$. A harmonic function $u$ on a Riemann surface $R$ is called $\Phi$-bounded if $\Phi (|u|)$ is majorized by a harmonic function on R. M. Parreau has shown that if $d < \infty$ ($d = \infty$, resp.), then every positive (bounded, resp.) harmonic function on $R$ reduces to a constant if and only if every $\Phi$-bounded harmonic function does. In this paper analogues of these results are given for the equation $\Delta u = Pu(P \geqq 0)$ on a Riemannian manifold.References
- Lars V. Ahlfors and Leo Sario, Riemann surfaces, Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, N.J., 1960. MR 0114911, DOI 10.1515/9781400874538
- Peter A. Loeb and Bertram Walsh, A maximal regular boundary for solutions of elliptic differential equations, Ann. Inst. Fourier (Grenoble) 18 (1968), no. fasc. 1, 283–308, vi. (English, with French summary). MR 243099, DOI 10.5802/aif.284
- Lauri Myrberg, Über die Integration der Differentialgleichung $\Delta u=c(P)u$ auf offenen Riemannschen Flächen, Math. Scand. 2 (1954), 142–152 (German). MR 62878, DOI 10.7146/math.scand.a-10402
- Linda Lumer-Naïm, ${\cal H}^{p}$ spaces of harmonic functions, Ann. Inst. Fourier (Grenoble) 17 (1967), no. fasc. 2, 425–469 (1968). MR 226052, DOI 10.5802/aif.276
- Mitsuru Nakai, $\Phi$-bounded harmonic functions and classification of Riemann surfaces, Pacific J. Math. 15 (1965), 1329–1335. MR 192043, DOI 10.2140/pjm.1965.15.1329
- M. Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier (Grenoble) 3 (1951), 103–197 (1952) (French). MR 50023, DOI 10.5802/aif.37
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 261-265
- MSC: Primary 53.72; Secondary 30.00
- DOI: https://doi.org/10.1090/S0002-9939-1970-0271871-8
- MathSciNet review: 0271871