ON THE COMPLETENESS OF HAMILTONIAN VECTOR FIELDS

WILLIAM B. GORDON

Abstract. Sufficient conditions are given for a hamiltonian vector field to be complete which involve bounds on the potential or its gradient.

1. A vector field \(\xi \) on a manifold \(M \) is said to be complete iff for every \(m \in M \) the maximal interval of existence \((\omega_-, \omega_+) \) of every solution of

\[
\frac{dx}{dt} = \xi, \quad x(0) = m,
\]

is given by \(\omega_\pm = \pm \infty \), cf. [1]. Hence if \(\xi \) is of class \(C^1 \), so that solutions are unique, to say that \(\xi \) is complete means that \(\xi \) generates a 1-parameter group or (global) flow on \(M \). Let \((t_-, t_+) \) be a bounded open neighborhood of 0 in which a solution \(x = x(t) \) to (1) is defined. It is well known that \(\omega_\pm = \pm \infty \) iff \(x(t) \) remains in a compact set as \(t \) varies over any such neighborhood, [2]. A device which assures this property is provided by the following simple lemma.

Lemma. Let \(\xi \) be a \(C^0 \) vector field on a manifold \(M \) of class \(C^1 \). Then \(\xi \) is complete if there exist a \(C^1 \) function \(E \), a proper \(C^0 \) function \(f \), and constants \(\alpha, \beta \) such that for all \(m \in M \)

(i) \(\| \xi E(m) \| \leq \alpha \| E(m) \| \),
(ii) \(|f(m)| \leq \beta |E(m)| \).

(Recall that \(f \) proper means \(f^{-1}(\text{compact}) = \text{compact} \).)

Proof. From basic definitions \(\xi E(m) = dE(x(t))/dt \|_{t=0} \). Hence from Gronwall's inequality, or otherwise, it follows that \(|E(x(t))| \leq |E(x(0))| e^{\alpha|t|}, \omega_- < t < \omega_+ \) so that \(|f(x(t))| \leq \beta |E(x(0))| e^{\alpha|t|} \). Since \(f \) is proper, this means that \(x(t) \) remains in a compact set as \(t \) varies over a bounded neighborhood of 0 (for which a solution is defined).

2. To apply this lemma to the case \(\xi = \) hamiltonian vector field, let \((M, g) \) be a riemannian manifold of class \(C^1 \) with metric tensor \(g \), and let \((q, p) \) denote local coordinates on \(T^*(M) \). Every \(C^1 \) "potential" \(V \) on \(M \) gives rise to a hamiltonian \(H = T + V = \) kinetic energy + potential \(= \frac{1}{2} \sum g^{ij} \dot{p}_i \dot{p}_j + V(q) \) whose corresponding hamiltonian vector...
field ξ on $T^*(M)$ is given by $\xi = \sum \left\{ (\partial H/\partial p_i)\partial/\partial q_i - (\partial H/\partial q_i)\partial/\partial p_i \right\}$. We now prove the following

Theorem. Let $(M, g), \xi, V$ be as above. Then ξ is complete if any of the following are true.

(i) V is proper and bounded below, say $V \geq 0$.
(ii) (M, g) is complete (in the riemannian sense) and $V \geq 0$.
(iii) (M, g) is complete and $\| \nabla V \|$ is bounded.
(iv) (M, g) is complete and $\| \nabla V \| \leq \text{constant} \cdot \| w \|$ where $m \rightarrow w(m)$ is an isometric embedding of M into euclidean space.

Proof. For (i) apply the lemma with $f = E = H$. Since V is a proper function on M, and $V \geq 0$, it follows that H is proper on $T^*(M)$. But $\xi H = 0$, so that the hypotheses of the lemma are satisfied. For the remainder of the theorem, let $g \rightarrow w(g)$ be an isometric embedding of M into euclidean space \mathbb{R}^n. (The existence of such embeddings is given by a theorem of Nash [3].) Since (M, g) is complete as a riemannian manifold, M is complete with respect to the metric induced by g. Therefore M is a closed submanifold of \mathbb{R}^n. It follows that $r^2(m) = \| w(m) \|^2$ is a proper function on M. Also we have

$$| \xi r^2 | = 2 | \langle w, \sum p_i w_i \rangle | \leq 2 \| w \| \cdot \| \sum p_i w_i \| \leq 2 \| w \| \cdot (2T)^{1/2}$$

where \langle , \rangle is the standard inner product on \mathbb{R}^n, $w_i = \partial w/\partial q_i$ and $w^i = \sum g^{ij} w_j$, so that $g_{ij} = \langle w_i, w_j \rangle$ and $g^{ij} = \langle w^i, w^j \rangle$. To prove (ii), set $E = H + r^2$. Then it is easy to show that $| \xi E/E | \leq 2$. To obtain a function f satisfying the hypotheses of the lemma, set $f = r^2$ (or $f = E$). To prove (iii) and (iv) let $f = E = T + \frac{1}{2}r^2$. A direct calculation shows that $| \xi T | = | \sum g^{ij} p_i \partial V/\partial q_i | \leq (2T)^{1/2} \cdot \| \nabla V \|$ so that $| \xi E/E | \leq (2T)^{1/2} \| w \| \left(1 + \| \nabla V \| / \| w \| \right) / (T + \frac{1}{2} \| w \| ^2)$. The proof of (iv) is now immediate. To prove (iii) we need only choose an embedding for which $\| w(m) \|$ is bounded below by a positive number.

Note that (i) has as a consequence the well-known fact that every hamiltonian vector field attached to (the cotangent bundle of) a compact manifold is complete, this being a generalization of the fact that every compact riemannian manifold is complete in the riemannian sense, (the case $V = 0$).

Finally, we remark that the lemma and the theorem can easily be extended to the nonautonomous case $\xi = \xi(m, t)$ by the usual device: one considers the vector field $\xi = \xi + \partial/\partial t$ on $M \times \mathbb{R}$ (in the lemma) and $T^*(M) \times \mathbb{R}$ (in the theorem) to obtain sufficient conditions for completeness. For example, parts (iii) and (iv) of the theorem remain true if the potential is time dependent; to see this replace the function E in the argument by $E = E + t^2$. Then E is a proper function
on $T^*(M) \times \mathbb{R}$ and $|\xi\dot{E}/\dot{E}| \leq$ constant. On the other hand, generalizations of parts (i) and (ii) apparently require boundedness conditions on $\partial V/\partial t$.

Bibliography

Naval Research Laboratory, Code 7840, Washington, D. C. 20390