The nonexistence of maximum solutions of Volterra integral equations.
HTML articles powered by AMS MathViewer
- by H. E. Gollwitzer and R. A. Hager
- Proc. Amer. Math. Soc. 26 (1970), 301-304
- DOI: https://doi.org/10.1090/S0002-9939-1970-0285871-5
- PDF | Request permission
Abstract:
It has been claimed for some time that the scalar Volterra integral equation of the second kind has a maximum solution under rather mild hypotheses. We present and discuss a counterexample to this claim.References
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR 0069338
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038 V. Lakshmikantham and S. Leela, Differential and integral inequalities, Academic Press, New York, 1969.
- J. A. Nohel, Some problems in nonlinear Volterra integral equations, Bull. Amer. Math. Soc. 68 (1962), 323–329. MR 145307, DOI 10.1090/S0002-9904-1962-10790-3
- John A. Nohel, Problems in qualitative behavior of solutions of nonlinear Volterra equations, Nonlinear Integral Equations (Proc. Advanced Seminar Conducted by Math. Research Center, U.S. Army, Univ. Wisconsin, Madison, Wis., 1963) Univ. Wisconsin Press, Madison, Wis., 1964, pp. 191–214. MR 0163141
- John A. Nohel, Qualitative behaviour of solutions of nonlinear Volterra equations, Stability problems of solutions of differential equations (Proc. NATO Advanced Study Inst., Padua, 1965) Edizioni “Oderisi”, Gubbio, 1966, pp. 177–210. MR 0405024
- Tokui Sat\B{o}, Sur l’équation intégrale non linéaire de Volterra, Compositio Math. 11 (1953), 271–290 (French). MR 60712
- Wolfgang Walter, Differential- und Integral-Ungleichungen und ihre Anwendung bei Abschätzungs- und Eindeutigkeits-problemen, Springer Tracts in Natural Philosophy, Vol. 2, Springer-Verlag, Berlin-New York, 1964 (German). MR 0172076
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 301-304
- MSC: Primary 45.13
- DOI: https://doi.org/10.1090/S0002-9939-1970-0285871-5
- MathSciNet review: 0285871