Subcartesian products of finitely many finite algebras
HTML articles powered by AMS MathViewer
- by Ahmad Shafaat
- Proc. Amer. Math. Soc. 26 (1970), 401-404
- DOI: https://doi.org/10.1090/S0002-9939-1970-0265261-1
- PDF | Request permission
Abstract:
We show that if the lattice of subquasivarieties of a quasivariety of $\Omega$-algebras has a finite maximal chain then every algebra of the quasivariety is a subcartesian product of a family of certain finitely many finite algebras.References
- P. M. Cohn, Universal algebra, Harper & Row, Publishers, New York-London, 1965. MR 0175948
- J. A. Gerhard, The lattice of equational classes of idempotent semigroups, J. Algebra 15 (1970), 195–224. MR 263953, DOI 10.1016/0021-8693(70)90073-6
- G. Grätzer, On the class of subdirect powers of a finite algebra, Acta Sci. Math. (Szeged) 25 (1964), 160–168. MR 168510
- B. H. Neumann, Group properties of countable character, Selected questions of algebra and logic (a collection dedicated to the memory of A. I. Mal′cev) (Russian), Izdat. “Nauka” Sibirsk. Otdel., Novosibirsk, 1973, pp. 197–204. MR 0327912
- Hanna Neumann, Varieties of groups, Springer-Verlag New York, Inc., New York, 1967. MR 0215899
- Ahmad Shafaat, On implicationally defined classes of algebras, J. London Math. Soc. 44 (1969), 137–140. MR 237409, DOI 10.1112/jlms/s1-44.1.137
- Ahmad Shafaat, On the structure of certain idempotent semigroups, Trans. Amer. Math. Soc. 149 (1970), 371–378. MR 258995, DOI 10.1090/S0002-9947-1970-0258995-0
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 401-404
- MSC: Primary 08.30
- DOI: https://doi.org/10.1090/S0002-9939-1970-0265261-1
- MathSciNet review: 0265261