Proximality in minimal transformation groups
HTML articles powered by AMS MathViewer
- by Leonard Shapiro
- Proc. Amer. Math. Soc. 26 (1970), 521-525
- DOI: https://doi.org/10.1090/S0002-9939-1970-0266183-2
- PDF | Request permission
Abstract:
We present an action of the integers on a compact metric space such that in the resulting minimal topological transformation group the proximal relation is an equivalence relation but is not closed.References
- Joseph Auslander, On the proximal relation in topological dynamics, Proc. Amer. Math. Soc. 11 (1960), 890–895. MR 164335, DOI 10.1090/S0002-9939-1960-0164335-7
- Joseph Auslander, Endomorphisms of minimal sets, Duke Math. J. 30 (1963), 605–614. MR 155311
- Jesse Paul Clay, Proximity relations in transformation groups, Trans. Amer. Math. Soc. 108 (1963), 88–96. MR 154269, DOI 10.1090/S0002-9947-1963-0154269-3
- Robert Ellis, Lectures on topological dynamics, W. A. Benjamin, Inc., New York, 1969. MR 0267561
- Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1–49. MR 213508, DOI 10.1007/BF01692494
- Harvey B. Keynes, On the proximal relation being closed, Proc. Amer. Math. Soc. 18 (1967), 518–522. MR 212780, DOI 10.1090/S0002-9939-1967-0212780-X L. Shapiro, The structure of $H$-cascades, Cleveland Conference in Global Differentiate Dynamics (to appear).
- William A. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem $\textrm {mod}\ 2$, Trans. Amer. Math. Soc. 140 (1969), 1–33. MR 240056, DOI 10.1090/S0002-9947-1969-0240056-X
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 521-525
- MSC: Primary 54.80
- DOI: https://doi.org/10.1090/S0002-9939-1970-0266183-2
- MathSciNet review: 0266183