On existence of compact open normal subgroups of $0$-dimensional groups
HTML articles powered by AMS MathViewer
- by D. H. Lee and T. S. Wu
- Proc. Amer. Math. Soc. 26 (1970), 526-528
- DOI: https://doi.org/10.1090/S0002-9939-1970-0268325-1
- PDF | Request permission
Abstract:
Let $G$ be a locally compact $0$-dimensional group, and let $B(G)$ denote the set of all elements of $G$ whose conjugacy classes are relatively compact. We proved that the group $G$ has an open compact normal subgroup if and only if $B(G)$ is open in $G$.References
- Kenkichi Iwasawa, Topological groups with invariant compact neighborhoods of the identity, Ann. of Math. (2) 54 (1951), 345–348. MR 43106, DOI 10.2307/1969536
- B. H. Neumann, Groups with finite classes of conjugate elements, Proc. London Math. Soc. (3) 1 (1951), 178–187. MR 43779, DOI 10.1112/plms/s3-1.1.178
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 526-528
- MSC: Primary 22.20
- DOI: https://doi.org/10.1090/S0002-9939-1970-0268325-1
- MathSciNet review: 0268325