A BARRELED SPACE WITHOUT A BASIS

N. J. KALTON

ABSTRACT. An example is given of a separable, barrelled, nuclear, bornological Ptak space which has no Schauder basis.

A sequence \(\{x_n\} \) in a locally convex space \(E \) is a basis if each \(x \) in \(E \) can be expressed uniquely in the form \(x = \sum a_n x_n \); Singer [5] has given an example of a separable locally convex space which does not possess a basis. In this note I shall give another example which has the additional properties of being barrelled, bornological, nuclear and a Ptak space; this also partially answers a question raised in [2].

It seems desirable to introduce another form of separability in locally convex spaces: \(E \) will be called \(\omega \)-separable if it possesses a subspace \(G \) of countable dimension and such that every member of \(E \) is the limit of a sequence in \(G \). Thus if \(E \) has a basis, \(E \) is \(\omega \)-separable, and if \(E \) is \(\omega \)-separable then \(E \) is separable. Let \(\mathfrak{N} \) denote the cardinal of the continuum and let \(\text{card}(X) \) denote the cardinal of any set \(X \). If \(E \) is \(\omega \)-separable then \(\text{card}(E) \) is less than the cardinal of the set of all sequences in \(G \); as \(\text{card}(G) = \mathfrak{N} \), \(\text{card}(E) = \mathfrak{N} \).

Let \(K \) be the field of real numbers or of complex numbers.

Theorem. \(K^\mathfrak{N} \) is barrelled, bornological, nuclear and a Ptak space; it is separable but not \(\omega \)-separable, and so does not possess a basis.

Proof. \(K^\mathfrak{N} \) has a weak topology and is complete; hence \(K^\mathfrak{N} \) is a Ptak space (see [4, p. 162]). By the Mackey-Ulam theorem ([3, §28.8]) it is bornological as \(\mathfrak{N} \) is not strongly inaccessible; a complete bornological space is barrelled. The product of nuclear spaces is nuclear [4, p. 102] and so \(K^\mathfrak{N} \) is nuclear. Finally, \(K^\mathfrak{N} \) is separable by Theorem 7.2, p. 175 of [1] but \(\text{card}(K^\mathfrak{N}) = 2^\mathfrak{N} > \mathfrak{N} \), and so \(K^\mathfrak{N} \) cannot be \(\omega \)-separable.

The question which naturally arises is: does every \(\omega \)-separable locally convex space possess a basis? Singer's example, the weak*-dual of the Banach space \(m \) of all bounded sequences, is not \(\omega \)-separable; this follows from the results of [5] or from the fact that \(m^* \) contains a copy of the Stone-Čech compactification of the integers, and so has cardinality \(2^\mathfrak{N} \).

Received by the editors February 6, 1970.

AMS 1969 subject classifications. Primary 4601.

Key words and phrases. Locally convex spaces, basis, separable, barrelled, nuclear.

1 I am grateful to the referee for pointing this out.
References

Lehigh University, Bethlehem, Pennsylvania 18015