An approximation theorem for $\overline \partial$-closed forms of type $(n, n-1)$
HTML articles powered by AMS MathViewer
- by Barnet M. Weinstock
- Proc. Amer. Math. Soc. 26 (1970), 625-628
- DOI: https://doi.org/10.1090/S0002-9939-1970-0265638-4
- PDF | Request permission
Abstract:
Let $D$ be a bounded open set in ${C^n}$ with smooth boundary. Then every closed form of type $(n,n - 1)$ which is ${C^\infty }$ on $\bar D$ can be approximated uniformly on $\bar D$ by $(n,n - 1)$ forms which are closed in a neighborhood of $\bar D$. If ${C^n} - D$ is connected these forms can be chosen to be closed in ${C^n}$. This is applied to prove that a continuous function on the connected boundary of a bounded domain in ${C^n}$ admits a holomorphic extension to the interior if and only if it is a weak solution of the tangential Cauchy-Riemann equations.References
- Felix E. Browder, Functional analysis and partial differential equations. II, Math. Ann. 145 (1961/62), 81–226. MR 136857, DOI 10.1007/BF01342796
- Jean Dieudonné and Laurent Schwartz, La dualité dans les espaces $\scr F$ et $(\scr L\scr F)$, Ann. Inst. Fourier (Grenoble) 1 (1949), 61–101 (1950) (French). MR 38553
- Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0203075
- J. L. Kelley and Isaac Namioka, Linear topological spaces, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. MR 0166578, DOI 10.1007/978-3-662-41914-4
- L. Schwartz, Théorie des distributions. Tome I, Publ. Inst. Math. Univ. Strasbourg, vol. 9, Hermann & Cie, Paris, 1950 (French). MR 0035918
- Barnet M. Weinstock, Continuous boundary values of analytic functions of several complex variables, Proc. Amer. Math. Soc. 21 (1969), 463–466. MR 237825, DOI 10.1090/S0002-9939-1969-0237825-4
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 625-628
- MSC: Primary 32.70
- DOI: https://doi.org/10.1090/S0002-9939-1970-0265638-4
- MathSciNet review: 0265638