ON THE IDEAL STRUCTURE OF THE ALGEBRA OF RADIAL FUNCTIONS

ALAN SCHWARTZ

Abstract. Let L denote the convolution Banach algebra of integrable functions defined on \mathbb{R}^n and let L_r consist of the sub-algebra of radial functions. If I is a closed ideal of L, the zero-set of I is defined by $Z(I) = \{ y | \hat{f}(y) = 0 \text{ for all } f \in I \}$ where \hat{f} is the Fourier transform of f. The following theorem is proved. If I_1 and I_2 are closed ideals of L_r such that $I_1 \subset I_2$ (\subset denotes proper inclusion) then there is a closed ideal I such that $I_1 \subset I \subset I_2$.

Let n be a fixed positive integer, and let L denote the Banach algebra of integrable functions defined on \mathbb{R}^n with the usual norm and convolution. (The practice of identifying two functions which agree almost everywhere will be followed.) A function f defined on \mathbb{R}^n is said to be radial if $f(x) = \phi(|x|)$ for some function ϕ defined on $[0, \infty)$ and for almost every x in \mathbb{R}^n; L_r will denote the space of radial functions contained in L. A function in L is radial if and only if its Fourier transform is a radial function (see [1, pp. 69-79]), so L_r is a Banach algebra. If I is a closed ideal of L or of L_r, let $Z(I) = \{ y | \hat{f}(y) = 0 \text{ for every } f \in I \}$.

$Z(I)$ is called the zero-set of I.

Helson showed in [2] that if I_1 and I_2 are closed ideals of L such that $Z(I_1) = Z(I_2)$ and $I_1 \subset I_2$ (\subset denotes proper inclusion), then there is a closed ideal I such that $I_1 \subset I \subset I_2$. In the present paper Helson's theorem will be used to prove the following:

Theorem. If I_1 and I_2 are closed ideals of L_r such that $Z(I_1) = Z(I_2)$ and $I_1 \subset I_2$, then there is a closed ideal I of L_r such that $I_1 \subset I \subset I_2$.

The proof of the theorem will be given later; it is necessary, first, to examine how L_r sits in L.

Let $d\mu$ be the positive measure of unit mass distributed uniformly on the hypersphere $S = \{ x | x \in \mathbb{R}^n \text{ and } |x| = 1 \}$, and set

Received by the editors September 5, 1969.

AMS 1969 subject classifications. Primary 4240, 4258.

Key words and phrases. Convolution algebra, Fourier transform, ideal structure, radial functions, zero-sets.

Supported by an Assistant Professor Research Grant at the University of Missouri, St. Louis.

621
\[f_r(x) = \int f(\|x\|y)\,d\mu(y). \]

The integral must exist for almost every \(x\) by Fubini's theorem since \(\mathbb{R}^n\) can be thought of as a product of two measure spaces: one being \(S\) with the measure \(d\mu\) and the other being \([0, \infty)\) with the measure \(cP^{n-1}dp\) where \(dp\) is Lebesgue measure and \(c\) is the surface area of \(S\). It also follows from Fubini's theorem that \(f_r\) is in \(L\). Define

\[L_0 = \{ f \mid f \in L \text{ and } f_r(x) = 0 \text{ for almost every } x \text{ in } \mathbb{R}^n \}; \]

finally let \(f_0(x) = f(x) - f_r(x)\). The following lemmas list some properties of \(L_r, L_0, f_r\), and \(f_0\).

Lemma 1. The map \(f \to f_r\) is a continuous projection with unit norm, hence its null space \(L_0\) is closed and so \(L = L_0 \oplus L_r\).

The proof of Lemma 1 follows from the easily verified facts that \(\|f_r\| \leq \|f\|\) and that \(f = f_r\) if \(f\) is radial.

A thorough discussion of this decomposition can be found in [3].

Lemma 2. \(f\) is contained in \(L_0\) if and only if

\[\int f(\rho y)\,d\mu(y) = 0 \quad (\rho > 0). \]

Proof. Application of Fubini's theorem yields

\[\int f(\rho y)\,d\mu(y) = \int_{\mathbb{R}^n} f(x)\,dx \left\{ \int \exp(ix \cdot \rho y)\,d\mu(y) \right\} \]
\[= \int_{\mathbb{R}^n} f(x)K(x)\,dx, \]

where \(K(x)\) is the value of the inner integral. \(K(x)\) is a radial function because \(\mu\) is a weak limit of radial functions and \(K(x)\) is the Fourier-Stieltjes transform of \(\mu\), or see [1, pp. 69–79]. Conversion of the last integral into hyperspherical coordinates yields (2).

To prove the converse, suppose (2) holds for some \(f\) in \(L\). Then

\[\int f_r(\|x\|y)\,d\mu(y) + \int f_0(\|x\|y)\,d\mu(y) = 0. \]

The second integral vanishes by the first part of this lemma since \(f_0\) is in \(L_0\), and the value of the first integral is \(f_r(x)\). Thus \(f_r = 0\), so \(f_r = 0\) and hence \(f\) is in \(L_0\).
Lemma 3. The convolution of a function in L_0 and a function in L_∞ is contained in L_0.

Proof. Suppose f is in L_∞ and g is in L_0. Then for each x in \mathbb{R}^n

$$
\int (f \star g)^\wedge(|x| y) d\mu(y) = \int f'(|x| y) \hat{g}(|x| y) d\mu(y)
$$

$$
= \hat{f}(x) \int \hat{g}(|x| y) d\mu(y)
$$

$$
= 0
$$

by Lemma 2.

Lemma 4. Let I be a closed ideal of L_∞ and let K be the closed ideal of L generated by I. Then $I = K \cap L_\infty$, and $Z(I) = Z(K)$.

Proof. I is contained in K, hence in $K \cap L_\infty$. The fact that $K \cap L_\infty$ is contained in I will follow from the stronger fact that if f is in K, then f_r is in I. Suppose

$$
(3) \quad f = h + \sum_{i=1}^{m} h_i \ast g_i \quad (h \in I, \ h_i \in I, \ g_i \in L; \ i = 1, 2, \ldots, m).
$$

Then $f = h + \sum_{i=1}^{m} h_i \ast (g_i)_r + \sum_{i=1}^{m} h_i \ast (g_i)_0$. The second sum is contained in L_0 by Lemma 3 and the first sum is contained in I because I is an ideal of L_∞. Finally, the first sum plus h is f_r by Lemma 1; hence if f has the form (3) then f_r is in I. If f is any function in K, there is a sequence $\{f_k\}$ of finite linear combinations of the form of (3) such that f_k converges to f in L. The transformation of f into f_r is continuous on L so $\{(f_k)_r\}$ converges to f_r. Since I is closed, it must contain f_r. Finally $Z(K) \subseteq Z(I)$ because $I \subseteq K$ and $Z(K) = Z(I)$ since finite linear combinations of the form of (3) are dense in K.

Proof of Theorem. Let K_1 and K_2 be the closed ideals of L generated by I_1 and I_2 respectively. Then $K_1 \subseteq K_2$ by Lemma 4 because $K_1 \cap L_\infty = I_1 \subseteq I_2 = K_2 \cap L_\infty$, and

$$
Z(K_1) = Z(I_1) = Z(I_2) = Z(K_2).
$$

By Helson's theorem there must be a closed ideal K such that $K_1 \subseteq K \subseteq K_2$. Since K_2 is the ideal generated by I_2, it follows that $K \cap L_\infty \subseteq I_2$. The inclusion $I_1 \subseteq K \cap L_\infty$ is not immediate. Suppose there is no closed ideal K of L such that

$$
(4) \quad I_1 \subseteq K \cap L_\infty \subseteq I_2,
$$
then define \mathcal{K} to be the collection of all closed ideals of L such that

$$K_1 \subseteq K \subseteq K_2 \quad \text{and} \quad K \cap L_r = I_1.$$

Let \mathcal{K} be ordered by inclusion and let K^* be the union of all the ideals in a maximal chain of \mathcal{K}.

K^* is contained in \mathcal{K}. To see this let J be the closure in L of K^*. If f is in $K^* \cap L_r$, then f is in $K \cap L_r$ for some K in \mathcal{K} so f is in I_1; thus $K^* \cap L_r = I_1$ so $J \cap L_r = I_1$. Since $J \cap L_r = I_1$, it follows that $J \subseteq K_2$. Since K^* is a union of elements of \mathcal{K} it follows that $K_1 \subseteq J \subseteq K_2$. Thus J is in \mathcal{K} and so $K^* = J$ by the construction of K^*; hence, K^* is in \mathcal{K}. It also follows that $Z(K^*) = Z(K_2)$ because K^* lies between K_1 and K_2.

Helson's theorem can now be invoked to guarantee the existence of an ideal K^{**} such that $K^* \subseteq K^{**} \subseteq K_2$. Since $K^{**} \subseteq K_2$ it follows that $K^{**} \cap L_r \subseteq I_2$, and the proper inclusion $I_1 \subseteq K^{**} \cap L_r$ holds by the construction of K^*. Thus K^{**} contradicts our assumption that no ideal of L satisfies (4).

REFERENCES