THE COHOMOLOGY RING OF A FINITE GROUP SCHEME

GUSTAVE EFROYMSON

Abstract. Let k be a field and let A be a k-algebra with additional structure so that Spec A is a finite commutative group scheme over k, (so A is a Hopf algebra). Let $H^*(A, k)$ be the Hochschild cohomology ring. In another paper, we demonstrated that if k is a perfect field:

(a) $H^*(A, k)$ is generated by H^1 and H^2_{sym}.

(b) If characteristic $k = p \neq 2$, then $H^*(A, k)$ is freely generated by H^1 and H^2_{sym}.

(c) If characteristic $k = 2$, then there are subspaces V_1, V_2 of H^1 and V_3 of H^2_{sym} such that $H^*(A, k)$ is generated by V_1, V_2, V_3 and the only relations are $f^2 = 0$ for all f in V_1.

In this paper we show that if k is arbitrary (a) and (b) still hold, and we use an example of Oort and Mumford to show that (c) does not hold for arbitrary k.

1. $H^*(A, k)$ for k a field of characteristic $p \neq 2$. Recall briefly the definition of a finite group scheme. Let A be a k-algebra, A finitely generated as a k-module (k is always a field in this paper). We have maps $\Delta : A \to A \otimes A$, $s : A \to A$, $\epsilon : A \to k$ satisfying the usual axioms, [2] e.g. $(\Delta \otimes 1) \circ \Delta = (1 \otimes \Delta) \circ \Delta : A \otimes A \to A \otimes A \otimes A$.

We also assume Δ is commutative. This means that if $T : A \otimes A \to A \otimes A$ is defined by $T(a \otimes b) = b \otimes a$, then $T \circ \Delta = \Delta$. Then Spec A together with Δ, s, ϵ is a finite group scheme. (In other words A is a Hopf algebra over k.)

Let K be an extension of k. Let $A_K = A \otimes_k K$. Then Spec A_K together with maps $\Delta \otimes 1, s \otimes 1, \epsilon \otimes 1$ is a finite group scheme over K.

Let $H^*(A, k)$ be the Hochschild cohomology ring [1, p. 169], with product the cup product induced by $\Delta : A \to A \otimes A$. Then $H^*(A, k)$ is a commutative graded ring; meaning if f is in H^n, g in H^m, then $f \cup g = (-1)^{mn} g \cup f$.

Recall that if $C^*(A, k)$ is the standard resolution of k, [1, p. 174], then $C^*(A, k) \cong \text{Hom}_k(A^{\otimes 2}, k)$. We define $H^2_{\text{sym}}(A, k)$ as the subgroup of $H^2(A, k)$ generated by the standard cocycles f such that $f(x, y) = f(y, x)$ for all x, y in A.

In [2] the following theorem is proved.

Received by the editors September 8, 1969.

AMS 1969 subject classifications. Primary 1450, 1390; Secondary 1820.

Key words and phrases. Finite group scheme, Hochschild cohomology ring, $H^2_{\text{sym}}(A, k)$, Hopf algebra.
Theorem 1 [2, p. 317, Theorem 2.2]. If Spec A is a commutative group scheme over a perfect field k, then

(a) $H'(A, k)$ is generated by H^1 and H^2_{sym}.

(b) If characteristic $(k) \neq 2$, then $H'(A, k)$ is freely generated by H^1 and H^2_{sym}. Freely generated means the only relations are $f \cup g = (-1)^{m+n}f \cup g$ for f, g in H^n.

(c) If characteristic $(k) = 2$, then there exist subspaces V_1, V_2 of H^1, and V_3 of H^2_{sym} so that $H'(A, k)$ is generated by V_1, V_2, V_3 with additional relations $f \cup f = 0$ for all f in V_1.

Proposition 1. Let Spec A be a finite group scheme over a field k; let K be an extension field of k. Let $A_K = A \otimes_k K$ as above.

Then there is a natural isomorphism

$$H'(A, k) \otimes_k K \rightarrow H'(A_K, K).$$

Proof. This is just another form of the universal coefficient theorem. It is proven by noting that if $C_\ast(A, k)$ is an A-free resolution of the A-module k, then $C_\ast(A, k) \otimes K = C_\ast(A_K, K)$ is an A_K free resolution of the A_K module K. Also we have

$$\text{Hom}_A(C_n(A, k) \otimes K) \cong \text{Hom}_{A \otimes_k K}(C_n(A, k) \otimes K, K) = \text{Hom}_{A_K}(C_n(A_K, K), K).$$

Taking cohomology we get the required isomorphism of cohomology groups. One must also check that this is a homomorphism for the ring structure but this is just a matter of checking the maps induced by Δ and $\Delta \otimes 1$.

Note that we have an injection $\phi: H'(A, k) \rightarrow H'(A, k) \otimes_k K \cong H'(A_K, K)$.

Theorem 2. Let Spec A be a finite group scheme over a field k. Then $H'(A, k)$ is generated by H^1 and H^2_{sym}. Moreover $H'(A, k)$ is freely generated by H^1 and H^2_{sym} if characteristic $(k) \neq 2$.

Proof. Let K be a perfect extension of k. We have $\phi: H'(A, k) \rightarrow H'(A, k) \otimes K$. We identify $H'(A, k) \otimes K$ with $H'(A_K, K)$. Note that $H^2_{\text{sym}}(A, k) \otimes K$ will then be identified with $H^2_{\text{sym}}(A_K, K)$.

Let V_n be the subspace of $H^n(A, k)$ generated by H^1 and H^2_{sym}. By Theorem 1, $V_n \otimes_k K = H^n(A, k) \otimes_k K$ and so $V_n = H^n(A, k)$.

Now let characteristic $(k) \neq 2$. By part (b) of Theorem 1, there are no relations on $H^1(A_K, K)$ and $H^2_{\text{sym}}(A_K, K)$. Since

$$\phi: H'(A, k) \rightarrow H'(A_K, K)$$

is an injection, there cannot be any relations on $H^1(A, k)$ and $H^2_{\text{sym}}(A, k)$.
2. An example for characteristic 2. In [3, p. 320], Oort and Mumford give an example of a finite group scheme which is not of “truncation type.” We are interested in this example only when \(p = 2 \), and then it becomes:

Example. Let \(k \) be a field of characteristic 2. Let \(a \in k \), \(a^{1/2} \in k \).

Let

\[
A = k[x, y]/(x^4, x^2 - ay^2)
\]

with \(\Delta : A \to A \otimes A \) defined by \(\Delta x = 1 \otimes x + x \otimes 1 \), \(\Delta y = 1 \otimes y + y \otimes 1 \). \(s \) and \(\epsilon \) are the obvious maps.

Then \(\text{Spec } A \) is a finite group scheme over \(k \).

Proposition 2. If \(A \) is as above, \(H^r(A, k) \) is a commutative graded ring isomorphic to

\[
k[V_1, V_2, U]/(aV_1^2 - V_2^2),
\]

\(V_1, V_2 \) of degree 1, \(U \) of degree 2.

Proof. Let \(K = k(a^{1/2}) = k(b) \) with \(b^2 = a \). Let \(A_K = A \otimes_k K \) as before and let \(x' = x \otimes 1 \), \(y' = y \otimes 1 \). Then

\[
A_K = K[x', y']/(x'^4, x'^2 - ay'^2) \cong K[x', z]/(x'^4, z^2)
\]

where \(z = x' - by' \).

We will want to define resolutions \(C_*(A, k) \) of the \(A \) module \(k \) and \(C_*(A_K, K) \) of the \(A_K \) module \(K \). We will use primes to denote the elements of \(C_*(A_K, K) \). Let \(T_1, T_2, T_1', T_2' \) be of degree 1.

We want \(\partial T_1 = x \), \(\partial T_2 = y \), \(\partial T_1' = x' \), \(\partial T_2' = z \) so we can choose \(T_1' = T_1 \otimes 1 \), \(T_2' = T_1 \otimes 1 + T_2 \otimes b \).

Let \(S_1, S_2, S_1', S_2' \) be of degree 2. We want

\[
\partial S_1 = x^2 T_1, \quad \partial S_2 = x T_1 - ay T_2, \quad \partial S_1' = x'^2 T_1', \quad \partial S_2' = z T_2'.
\]

Now let \(C_*(A, k) \) be the algebra which is the exterior algebra on \(T_1, T_2 \) tensored with the divided power algebra on \(S_1, S_2 \). Let \(C_*(A_K, K) \) be the same thing with \(T_1', T_2', S_1', S_2' \) replacing \(T_1, T_2, S_1, S_2 \) respectively. We know \(C_*(A_K, K) \) is a free \(A_K \) resolution of \(K \), [2, p. 315]. Also we can let \(S_1' = S_1 \otimes 1 \) and \(S_2' = S_2 \otimes 1 + T_1 T_2 \otimes b \). Then it is clear that \(C_*(A, k) \otimes_k K \) can be identified with \(C_*(A_K, K) \). This means that \(C_*(A, k) \) is a free resolution also.

Take \(C^*(A, k) = \text{Hom}_A(C_*(A, k), k) \) and \(C^*(A_K, K) = \text{Hom}_{A_K}(C_*(A_K, K), K) \). So \(C^*(A, k) \cong \text{Hom}_A(A \otimes_k k, k) \cong \text{Hom}_k(k \otimes_k k) \).

Let \(V_1, V_2 \) be the dual basis to \(T_1, T_2 \) under the above identification so \(V_1(T_1) = 1 \), etc. Then \(V_1 V_2 \) will be dual to \(T_1 T_2 \) in \(C^2(A, k) \). Com-
plete the dual basis by letting \(U_1, U_2 \) be \(k \) dual to \(S_1, S_2 \). Do the same for the primes. Then

\[
C'(A_k, K) \cong K[V'_1, V'_2, U'_1, U'_2]/(V'^2_1, V'^2_2 - U'_2)
\]

with \(\delta V'_1 = 5 U'_1 \). See [2, p. 317, Corollary].

We also have a natural map identifying \(C(A_k, K) \) with \(C(A, k) \otimes K \). We have

\[
\begin{pmatrix} T'_1 \\ T'_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & b \end{pmatrix} \begin{pmatrix} T_1 \otimes 1 \\ T_2 \otimes 1 \end{pmatrix}.
\]

Dualizing we get

\[
\begin{pmatrix} V_1 \otimes 1 \\ V_2 \otimes 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & b \end{pmatrix} \begin{pmatrix} V'_1 \\ V'_2 \end{pmatrix}.
\]

Also

\[
\begin{pmatrix} S'_1 \\ S'_2 \\ T'_1 T'_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & b \\ 0 & 0 & b \end{pmatrix} \begin{pmatrix} S_1 \otimes 1 \\ S_2 \otimes 1 \\ T_1 T_2 \otimes 1 \end{pmatrix}
\]

induces

\[
\begin{pmatrix} U_1 \otimes 1 \\ U_2 \otimes 1 \\ V_1 V_2 \otimes 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & b & b \end{pmatrix} \begin{pmatrix} U'_1 \\ U'_2 \\ V'_1 V'_2 \end{pmatrix}.
\]

On the cohomology level, we have \(V'^2_1 = 0, V'^2_2 = U'_2 \). However \(V_1 \otimes 1 = V'_1 + V'_2 \) which implies \(V'^2_1 \otimes 1 = U'_2 \). Similarly \(V_2 \otimes 1 = b V'_2 \) implies \(V'^2_2 \otimes 1 = b^2 U'_2 = a U'_2 \). Thus \(a V'^2_1 = V'^2_2 \). Moreover \(V'^2_2 = U_2 \). Let \(U = U_1 \). Our result follows since \(H^*(A, k) \otimes_k K = H^*(A_k, K) \) and so no more relations are possible.

References