A CHARACTERIZATION OF N-COMPACT SPACES

KIM-PEU CHEW

Abstract. In this paper, we prove the following theorem:

Theorem A. A 0-dimensional space X is N-compact if and only if every clopen ultrafilter on X with the countable intersection property is fixed, where N is the space of all natural numbers.

Two consequences of Theorem A are as follows:

Theorem B. Suppose that X and Y are N-compact spaces. A mapping ϕ from the Boolean ring $\mathcal{B}(X)$ of all clopen subsets of X onto the Boolean ring $\mathcal{B}(Y)$ of all clopen subsets of Y is an isomorphism with the property that $\bigcap_{i=1}^{n} A_i = \emptyset$ if and only if there exists a homeomorphism h from X onto Y such that $\phi(A) = h[A]$ for each A in $\mathcal{B}(X)$.

Theorem C. A 0-dimensional space X is N-compact if and only if the collection of all the countable clopen coverings of X is complete.

Given two spaces X and E, we say that X is E-completely regular (respectively E-compact) provided that X is homeomorphic to a subspace (respectively, closed subspace) of E^m for some cardinal number m [6]. When $E = R$, the space of all real numbers, a completely regular space X is R-compact (i.e. Hewitt realcompact) if and only if every z-ultrafilter on X with the countable intersection property is fixed [3, p. 77]. The purpose of this note is to prove an analogous result, namely,

Theorem A. A 0-dimensional space X is N-compact if and only if every clopen ultrafilter on X with the countable intersection property is fixed, where N is the space of all natural numbers.

A subset of a space X which is both closed and open is referred to as a clopen subset. $\mathcal{B}(X)$ denotes the collection of all clopen subsets of X. A 0-dimensional space is a Hausdorff space which has a base for the topology consisting of clopen subsets.

Definitions. A clopen filter \mathcal{F} on a space X is a nonempty collection of clopen subsets of X such that

(i) $\emptyset \in \mathcal{F}$;

Received by the editors November 3, 1969.

AMS 1968 subject classifications. Primary 5453; Secondary 0660.

Key words and phrases. E-completely regular, E-compact, N-compact, clopen ultrafilter, countable intersection property, Boolean ring.

1 A portion of this research has been done while the author was a postdoctoral fellow at the University of British Columbia. The author wishes to express his gratitude to Professor S. Mrówka for his helpful suggestions.
(ii) if \(U, V \in \mathcal{F} \) then \(U \cap V \in \mathcal{F} \); and

(iii) if \(V \in \mathcal{F} \), \(U \in \mathcal{B}(X) \) and \(U \supset V \) then \(U \in \mathcal{F} \).

A clopen filter \(\mathcal{F} \) is fixed if \(\bigcap \mathcal{F} \neq \emptyset \) and \(\mathcal{F} \) is said to have the countable intersection property (abbreviated c.i.p.) provided that for each countable subcollection \(\mathcal{G} \) of \(\mathcal{F} \), \(\bigcap \mathcal{G} \neq \emptyset \). A clopen ultrafilter is a clopen filter which is maximal in the collection of all clopen filters ordered by inclusion.

Proof of Theorem A. Necessity. Suppose that \(X \) is \(N \)-compact and \(\mathcal{U} \) is a clopen ultrafilter on \(X \) with \(\bigcap \mathcal{U} = \emptyset \). We shall show that \(\mathcal{U} \) does not have c.i.p.

Let \(\mathcal{U} = \{ \overline{U} = \text{cl}_{\beta N \mathcal{X}} U : U \in \mathcal{U} \} \), where \(N^* = N \cup \{ \infty \} \) is the one-point compactification of \(N \), and \(\beta N \mathcal{X} \) is the 0-dimensional compactification of \(X \) such that every continuous function \(f \) from \(X \) into \(N^* \) has a continuous extension \(f^* \) from \(\beta N \mathcal{X} \) into \(N^* \). Then \(\mathfrak{N} \neq \emptyset \) since \(\beta N \mathcal{X} \) is compact and \(\mathfrak{N} \) has the finite intersection property. Choose a point \(p \) in \(\mathfrak{N} \) then \(p \in \beta N \mathcal{X} \backslash X \). Since \(X \) is \(N \)-compact, there exists a continuous function \(f \) from \(X \) into \(N \) whose continuous extension \(f^* \) from \(\beta N \mathcal{X} \) into \(N^* \) has the property that \(f^*(p) = \infty \).

Let \(V_n = N^* \setminus \{ 1, 2, \ldots, n \} \), \(n = 1, 2, 3, \ldots \). Since \(V_n \) is a clopen neighborhood of \(\infty \), \(V_n = f^{n-1} \{ V_n \} \) is a clopen neighborhood of \(p \) in \(\beta N \mathcal{X} \). Since \(p \in \mathfrak{N} \) and \(X \) is dense in \(\beta N \mathcal{X} \), \((X \cap V_n) \cap U \neq \emptyset \) for each \(U \in \mathcal{U} \). By maximality of \(\mathcal{U} \), \(X \cap V_n \in \mathcal{U} \) for each \(n = 1, 2, \ldots \).

But \(\bigcap_{n=1}^\infty (X \cap V_n) = \emptyset \) for if \(q \in \bigcap_{n=1}^\infty (X \cap V_n) \) then \(q \in X \) and \(f^*(q) = f(q) \in \bigcap_{n=1}^\infty V_n = \{ \infty \} \). This contradicts the fact that \(f[X] \subset N \). Therefore, \(\mathcal{U} \) does not have c.i.p.

Sufficiency. Assume that every clopen ultrafilter on \(X \) with c.i.p. is fixed. Consider the evaluation map \(e : X \rightarrow N^{C(X, N)} = P \) where \(C(X, N) \) is the collection of all continuous maps on \(X \) to \(N \) and for \(x \in X \), \((ex)(f) = f(x) \) for each \(f \) in \(C(X, N) \). Since \(X \) is 0-dimensional, \(e \) is a homeomorphism. Furthermore, \(e[X] = \text{cl}_P e[X] \), for if \(p \in \text{cl}_P e[X] \) and \(p \in e[X] \) then the trace on \(e[X] \) of the family of all clopen neighborhoods of \(p \) in \(P \) has empty intersection. Therefore, the clopen ultrafilter \(\mathfrak{U} \) on \(e[X] \) containing the trace fails to have the c.i.p., say, \(U_i \in \mathfrak{U} \), \(i = 1, 2, \ldots \), and \(\bigcap_{i=1}^\infty U_i = \emptyset \). Let \(F_n = \bigcap_{i=1}^n U_i \), then \(F_n \in \mathfrak{U} \), \(F_n \supset F_{n+1} \) and \(\bigcap_{i=1}^\infty F_{n+1} = \emptyset \). Define a function \(f : e[X] \rightarrow N \) as follows

\[
\begin{align*}
f(x) &= 1 \quad \text{if } x \in e[X] \setminus F_1, \\
&= n + 1 \quad \text{if } x \in F_n \setminus F_{n+1}.
\end{align*}
\]

It is obvious that \(f \) is continuous and cannot extend continuously to the point \(p \). This is a contradiction, since each continuous function...
on $e[X]$ to N, being essentially just a projection into a coordinate space, extends continuously over all of P. Thus $e[X] = \text{cl}_P e[X]$, so X is N-compact.

It is well known that $\mathfrak{B}(X)$ is a Boolean ring if the sum and product of two elements A, B in $\mathfrak{B}(X)$ are defined by $A + B = (A \cup B) \setminus (A \cap B)$ and $AB = A \cap B$. The following theorem follows from Theorem A and we shall omit its proof since it is similar to that of [4, Theorem 3.2].

Theorem B. Suppose that X, Y are N-compact spaces. A mapping ϕ from the Boolean ring $\mathfrak{B}(Y)$ of all clopen subsets of Y is an isomorphism with the property that $\bigcap_{i=1}^{n} A_i = \emptyset$ $(A_i \subseteq \mathfrak{B}(X))$ implies $\bigcap_{i=1}^{n} \phi(A_i) = \emptyset$ if and only if there exists a homeomorphism h from X onto Y such that $\phi(A) = h[A]$ for each A in $\mathfrak{B}(X)$.

According to Frolik [2], a space X is almost realcompact if every ultrafilter of open subsets of X with $\bigcap_{i} \mathcal{U} = \emptyset$ then $\bigcap_{i} \mathcal{V} = \emptyset$ for some countable subfamily \mathcal{V} of \mathcal{U}. Let $\alpha = \{\mathcal{U}\}$ be a collection of coverings of a space X. An α-Cauchy family \mathcal{F} is a filter of subsets of X such that for every \mathcal{U} in α there exist A in \mathcal{U} and F in \mathcal{F} with $A \supseteq F$. The collection α will be called complete if $\bigcap_{i} \mathcal{F} \neq \emptyset$ for every α-Cauchy family \mathcal{F}.

The following theorem is an immediate consequence of Theorem A. (Compare [2, Theorems 1, 13].)

Theorem C. A 0-dimensional space X is N-compact if and only if the collection of all clopen coverings of X is complete.

In conclusion, we mention the following open questions.

(a) Is each 0-dimensional realcompact space necessarily N-compact?

(b) Is each 0-dimensional almost realcompact space necessarily N-compact?

(c) Is each 0-dimensional almost realcompact space necessarily realcompact?

Remarks. It was pointed out in [5] that the affirmative solution of (a) was announced erroneously in [1]. If (b) has an affirmative solution then realcompactness, almost realcompactness and N-compactness are equivalent for 0-dimensional spaces. Finally, let \mathcal{U} be a clopen ultrafilter of a 0-dimensional space X and \mathcal{V} be the ε-ultrafilter (respectively, ultrafilter of open subsets) containing \mathcal{U}. Then it follows from Theorem A that a sufficient condition for (a) (respectively, (b)) to have an affirmative solution is the statement that \mathcal{V} (respectively, \mathcal{V}) has the c.i.p. if \mathcal{U} does.
References

State University of New York, Buffalo, New York 14222