A comparision theorem for Hamiltonian vector fields
HTML articles powered by AMS MathViewer
- by Alan Weinstein and Jerrold Marsden
- Proc. Amer. Math. Soc. 26 (1970), 629-631
- DOI: https://doi.org/10.1090/S0002-9939-1970-0273648-6
- PDF | Request permission
Abstract:
The question of completeness of Hamiltonian systems is investigated for a class of potentials not necessarily bounded below. The result generalizes previous work of W. Gordon and D. Ebin.References
- David G. Ebin, Completeness of Hamiltonian vector fields, Proc. Amer. Math. Soc. 26 (1970), 632–634. MR 278340, DOI 10.1090/S0002-9939-1970-0278340-X
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- Teruo Ikebe and Tosio Kato, Uniqueness of the self-adjoint extension of singular elliptic differential operators, Arch. Rational Mech. Anal. 9 (1962), 77–92. MR 142894, DOI 10.1007/BF00253334
- Jacqueline Lelong-Ferrand, Sur les groupes à un paramètre de transformations des variétés différentiables, J. Math. Pures Appl. (9) 37 (1958), 269–278 (French). MR 98415
- Jacqueline Lelong-Ferrand, Condition pour qu’un groupe de transformations infinitésimales engendre un groupe global, C. R. Acad. Sci. Paris 249 (1959), 1852–1854 (French). MR 109332
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 629-631
- MSC: Primary 57.50; Secondary 34.00
- DOI: https://doi.org/10.1090/S0002-9939-1970-0273648-6
- MathSciNet review: 0273648