Completeness of Hamiltonian vector fields
HTML articles powered by AMS MathViewer
- by David G. Ebin
- Proc. Amer. Math. Soc. 26 (1970), 632-634
- DOI: https://doi.org/10.1090/S0002-9939-1970-0278340-X
- PDF | Request permission
Abstract:
We prove that under certain conditions the flow of a Hamiltonian vector field on a possibly infinite-dimensional dynamical system exists for all time.References
- R. Abraham, Foundations of mechanics, Benjamin, New York, 1967. MR 36 #3527.
- Peter Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math. 210 (1962), 73–88. MR 141050, DOI 10.1515/crll.1962.210.73
- N. L. Belaya and N. N. Petrov, Completeness of vector fields, Vestnik St. Petersburg Univ. Math. 26 (1993), no. 4, 3–4. MR 1794196
- Serge Lang, Introduction to differentiable manifolds, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155257
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 26 (1970), 632-634
- MSC: Primary 57.55; Secondary 34.00
- DOI: https://doi.org/10.1090/S0002-9939-1970-0278340-X
- MathSciNet review: 0278340