UNIQUENESS OF GENERATORS OF PRINCIPAL IDEALS
IN RINGS OF CONTINUOUS FUNCTIONS

M. J. CANFELL

Abstract. Let \(aR \) denote the principal right ideal generated in a ring \(R \) by an element \(a \). Kaplansky has raised the question: If \(aR = bR \), are \(a \) and \(b \) necessarily right associates? In this note we show that for rings of continuous functions the answer is affirmative if and only if the underlying topological space is zero-dimensional. This gives an algebraic characterization of the topological concept "zero-dimensional". By extending the notion of uniqueness of generators of principal ideals we are able to give an algebraic characterization of the concept "\(n \)-dimensional".

In the sequel, \(R \) is assumed to be commutative.

Definition. A set of principal ideals \(\{a_iR\}, \ i = 1, \ldots, n \), is uniquely generated if whenever \(a_iR = b_iR, \ i = 1, \ldots, n \), there exist elements \(u_i \) of \(R \) such that \(a_i = b_iu_i, \ i = 1, \ldots, n \), and \(u_1R + \cdots + u_nR = R \). The dimension of \(R \)—denoted by \(\text{dim} \ R \)—is the least integer \(n \) such that every set of \(n+1 \) principal ideals is uniquely generated.

In the following \(X \) will denote a completely regular topological space, \(C(X) \) the ring of real-valued continuous functions defined on \(X \), and \(C^*(X) \) the subring of \(C(X) \) consisting of the bounded functions in \(C(X) \). For \(f \in C(X) \), the zero set \(Z(f) \) of \(f \), is defined by \(Z(f) = \{ x \in X : f(x) = 0 \} \). Clearly \(f_1C(X) + \cdots + f_nC(X) = C(X) \) if and only if \(Z(f_1) \cap \cdots \cap Z(f_n) = \emptyset \). For further information on zero sets the reader is referred to [2]. An important fact is that disjoint zero sets are completely separated.

We use the modification of covering dimension involving basic covers [2, p. 243], and the equivalent definitions given in [1]. The unit cube in \(E^{n+1} \) is denoted by

\[
I^{n+1} \cap I^{n+1} = \{ x \in E^{n+1} : \ -1 \leq x_i \leq 1, \ i = 1, \ldots, n + 1 \}.
\]

We also write

\[
I_+^{n+1} = \{ x \in E^{n+1} : 0 \leq x_i \leq 1, \ i = 1, \ldots, n + 1 \}
\]

and

\[
S^n_+ = \{ x \in I_+^{n+1} : x_i = 0 \text{ or } 1 \text{ for some } i \}.
\]
A simple consequence of this theorem is the following well-known result.

Corollary. \(\dim X = \dim \beta X = \dim vX \), where \(\beta X \) is the Stone-Čech compactification of \(X \), and \(vX \) is the Hewitt real-compactification of \(X \).

Proof. Since \(C^*(X) \) is isomorphic to \(C(\beta X) \), we have \(\dim X \)
\[n \iff \dim C^*(X) = n \iff \dim \beta X = n. \] Since \(C(X) \) is isomorphic to \(C(\nu X) \), we have \(\dim X = n \iff \dim C(X) = n \iff \dim C(\nu X) = n \iff \dim \nu X = n. \]

References

University of New England, New South Wales, Australia