UNIQUENESS OF GENERATORS OF PRINCIPAL IDEALS IN RINGS OF CONTINUOUS FUNCTIONS

M. J. CANFELL

Abstract. Let aR denote the principal right ideal generated in a ring R by an element a. Kaplansky has raised the question: If $aR = bR$, are a and b necessarily right associates? In this note we show that for rings of continuous functions the answer is affirmative if and only if the underlying topological space is zero-dimensional. This gives an algebraic characterization of the topological concept "zero-dimensional". By extending the notion of uniqueness of generators of principal ideals we are able to give an algebraic characterization of the concept "n-dimensional".

In the sequel, R is assumed to be commutative.

Definition. A set of principal ideals \(\{a_iR\}, \ i = 1, \ldots, n, \) is uniquely generated if whenever $a_iR = b_iR$, $i = 1, \ldots, n$, there exist elements u_i of R such that $a_i = b_iu_i$, $i = 1, \ldots, n$, and $u_1R + \cdots + u_nR = R$. The dimension of R—denoted by $\dim R$—is the least integer n such that every set of $n+1$ principal ideals is uniquely generated.

In the following X will denote a completely regular topological space, $C(X)$ the ring of real-valued continuous functions defined on X, and $C^*(X)$ the subring of $C(X)$ consisting of the bounded functions in $C(X)$. For $f \in C(X)$, the zero set $Z(f)$ of f, is defined by $Z(f) = \{x \in X : f(x) = 0\}$. Clearly $f_1C(X) + \cdots + f_nC(X) = C(X)$ if and only if $Z(f_1) \cap \cdots \cap Z(f_n) = \emptyset$. For further information on zero sets the reader is referred to [2]. An important fact is that disjoint zero sets are completely separated.

We use the modification of covering dimension involving basic covers [2, p. 243], and the equivalent definitions given in [1]. The unit cube in E^{n+1} is denoted by

\[I^{n+1} = \{x \in E^{n+1} : -1 \leq x_i \leq 1, i = 1, \ldots, n+1\}. \]

We also write

\[I_+^{n+1} = \{x \in E^{n+1} : 0 \leq x_i \leq 1, i = 1, \ldots, n+1\} \]

and

\[S_n^+ = \{x \in I_+^{n+1} : x_i = 0 \text{ or } 1 \text{ for some } i\}. \]

Received by the editors April 1, 1970.

AMS 1969 subject classifications. Primary 1310, 5470.

Key words and phrases. Principal ideals, uniqueness of generators, dimension of a ring, rings of continuous functions, topological dimension.

571
Theorem. The following conditions are equivalent.

(i) \(\text{dim } X = n \).

(ii) \(\text{dim } C(X) = n \).

(iii) \(\text{dim } C^*(X) = n \).

Proof. \(\text{dim } C(X) \leq \text{dim } X \). Let \(\text{dim } X = n \) and suppose \(f_i C(X) = g_i C(X) \), \(i = 1, \ldots, n+1 \). There exist functions \(s_i, t_i \) in \(C(X) \) such that \(f_i = g_i s_i, g_i = f_i t_i \), \(i = 1, \ldots, n+1 \). Then \(g_i = g_i s_i t_i \) so that \(g_i(1 - s_i t_i) = 0 \).

Since \(Z_i = Z(s_i) \) and \(Z'_i = Z(s_i + 1 - s_i t_i) \) are disjoint zero sets, there exist \(m_i \) in \(C(X) \) such that \(m_i \) is 1 on \(Z_i \), 0 on \(Z'_i \) and \(0 \leq m_i \leq 1 \).

Let \(m \) be the mapping of \(X \) into \(\mathbb{R}^{n+1} \) defined by \(m(x) = (m_1(x), \ldots, m_{n+1}(x)) \). Then \(m \) maps all the points in \(Z_i \) and \(Z'_i \) into \(\mathbb{S}^n \). Since \(\text{dim } X \leq n \), there exists a mapping \(h = (h_1, \ldots, h_{n+1}) \) of \(X \) into \(\mathbb{S}^n \) such that \(h(x) = m(x) \) whenever \(m(x) \in \mathbb{S}^n \) [1, Definition 3]. Let \(k_i = s_i + h_i(1 - s_i t_i), i = 1, \ldots, n+1 \). Then \(Z(k_i) \cap \cdots \cap Z(k_{n+1}) = \emptyset \).

To see this, note that for any \(x \in X \) we have \(h_i(x) = 0 \) or \(h_i(x) = 1 \) for some \(i \). If \(h_i(x) = 0 \) then \(s_i(x) \neq 0 \) so that \(k_i(x) \neq 0 \). If \(h_i(x) = 1 \), then \(s_i(x) + 1 - s_i(x) t_i(x) \neq 0 \) and again \(k_i(x) \neq 0 \). Hence \(k_i C(X) + \cdots + k_{n+1} C(X) = C(X) \). Finally, \(g_i k_i = g_is_i + h_i g_i(1 - s_i t_i) = g_is_i = f_i, i = 1, \ldots, n+1 \).

\(\text{dim } X \leq \text{dim } C(X) \). Let \(\text{dim } C(X) = n \) and let \(Z_i, Z'_i, i = 1, \ldots, n+1 \), be disjoint pairs of zero sets of \(X \). We construct functions \(f_i, k_i \) such that \(f_i = k_i f_i \) and \(f_i = 1 \) on \(Z_i, f_i = -1 \) on \(Z'_i, i = 1, \ldots, n+1 \). There exist \(p_i \) such that \(p_i = 1 \) on \(Z_i \) and \(p_i = -1 \) on \(Z'_i \). There exist \(k_i, s_i, t_i \) such that \(k_i = 1 \) when \(p_i \geq \frac{1}{2}, k_i = -1 \) when \(p_i \leq -\frac{1}{2}, -1 \leq k_i \leq 1 \):

\[
\begin{align*}
t_i &= 1 \quad \text{on } Z_i, t_i = 0 \quad \text{when } p_i \leq \frac{1}{2}, 0 \leq t_i \leq 1, \\
s_i &= -1 \quad \text{on } Z'_i, s_i = 0 \quad \text{when } p_i \geq -\frac{1}{2}, -1 \leq s_i \leq 0.
\end{align*}
\]

Let \(f_i = s_i + t_i \). Then \(f_i = k_i f_i \), \(f_i = k_i f_i \), so that \(f_i C(X) = |f_i| C(X), i = 1, \ldots, n+1 \). Since \(\text{dim } C(X) \leq n \), there exist \(h_1, \ldots, h_{n+1} \) such that \(f_i = h_i |f_i|, i = 1, \ldots, n+1 \), and \(h_1 C(X) + \cdots + h_{n+1} C(X) = C(X) \). Clearly \(Z_i \) and \(Z'_i \) are separated in \(X - Z(h_i), Z(h_i) \cap \cdots \cap Z(h_{n+1}) = \emptyset \). Hence \(\text{dim } X \leq n \) [1, Definition 4].

\(\text{dim } X = \text{dim } C^*(X) \). This is proved using the same methods as above, with \(C(X) \) replaced by \(C^*(X) \).

A simple consequence of this theorem is the following well-known result.

Corollary. \(\text{dim } X = \text{dim } \beta X = \text{dim } vX \), where \(\beta X \) is the Stone-Čech compactification of \(X \), and \(vX \) is the Hewitt real-compactification of \(X \).

Proof. Since \(C^*(X) \) is isomorphic to \(C(\beta X) \), we have \(\text{dim } X \)
UNIQUENESS OF GENERATORS OF PRINCIPAL IDEALS

\[n \iff \dim C^*(X) = n \iff \dim C(\beta X) = n \iff \dim \beta X = n. \]
Since \(C(X) \) is isomorphic to \(C(\nu X) \), we have \(\dim X = n \iff \dim C(X) = n \iff \dim C(\nu X) = n \iff \dim \nu X = n. \)

REFERENCES

University of New England, New South Wales, Australia