On the nonexistence of slices for $p$-adic transformation groups
HTML articles powered by AMS MathViewer
- by Lawrence M. Franklin
- Proc. Amer. Math. Soc. 27 (1971), 183-185
- DOI: https://doi.org/10.1090/S0002-9939-1971-0267039-2
- PDF | Request permission
Abstract:
If a compact Lie group acts effectively on a manifold, then local cross-sections to the orbit structure can be constructed. They are called slices. We prove that if a compact group acts effectively on a manifold, but it is not a Lie group, then a slice cannot exist at every point.References
- Hsin Chu, On the existence of slices for transformation groups, Proc. Amer. Math. Soc. 18 (1967), 513β517. MR 212126, DOI 10.1090/S0002-9939-1967-0212126-7
- D. Montgomery, H. Samelson, and C. T. Yang, Groups on $E^n$ with $(n-2)$-dimensional orbits, Proc. Amer. Math. Soc. 7 (1956), 719β728. MR 78643, DOI 10.1090/S0002-9939-1956-0078643-0
- D. Montgomery, H. Samelson, and L. Zippin, Singular points of a compact transformation group, Ann. of Math. (2) 63 (1956), 1β9. MR 74773, DOI 10.2307/1969986
- D. Montgomery and C. T. Yang, The existence of a slice, Ann. of Math. (2) 65 (1957), 108β116. MR 87036, DOI 10.2307/1969667
- Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New York-London, 1955. MR 0073104
- Richard S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. (2) 73 (1961), 295β323. MR 126506, DOI 10.2307/1970335
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 27 (1971), 183-185
- MSC: Primary 22.40
- DOI: https://doi.org/10.1090/S0002-9939-1971-0267039-2
- MathSciNet review: 0267039