TOPOLOGICAL CHARACTERIZATION OF
PSEUDO-\mathfrak{N}-COMPACT SPACES

GIOVANNI VIDOSICH

Abstract. Pseudo-\mathfrak{N}-compact spaces, usually defined by cardinal bounds on uniform coverings of the fine uniformity, are characterized by cardinal bounds on locally finite open (resp. closed) coverings. This yields a new characterization of pseudo-compact spaces as well as of G. Aquaro's paralindelöfian spaces.

According to [4, p. 135], a pseudo-\mathfrak{N}-compact space, \mathfrak{N} an infinite cardinal, is a uniformizable space whose fine uniformity has covering character $\leq \mathfrak{N}$—which means that every uniform covering of the fine uniformity (= finest compatible uniformity) has a uniform refinement of cardinality $<\mathfrak{N}$. For $\mathfrak{N} = \aleph_0$, we have the well-known pseudocompact spaces; for $\mathfrak{N} = \aleph_1$, we have the paralindelöfian spaces of [1]. Although many topological characterizations of pseudocompact spaces are well known, there is no topological characterization of pseudo-\mathfrak{N}-compact spaces with $\mathfrak{N} > \aleph_0$, since in [1] and [4, Chapter vii] they are investigated only from the viewpoint of uniform spaces (roughly speaking, [1, Proposition 3] characterizes paralindelöfian spaces by \mathfrak{U}-reducible locally finite open coverings, but this characterization—a part of the very complicated notion of “\mathfrak{U}-reducible”—is not purely topological since \mathfrak{U}-reducible locally finite open coverings are exactly the elements of a base for the fine uniformity).

In this note, pseudo-\mathfrak{N}-compact spaces are characterized by cardinal bounds on locally finite open or closed coverings. This should be new also for pseudocompact spaces since no cardinal bounds are assumed, a priori, on coverings.

Terminology. Our terminology is based on [4], with the sole exception that our spaces are not assumed, a priori, to be Hausdorff.

Theorem. For a uniformizable space X the following statements are pairwise equivalent:

1. X is pseudo-\mathfrak{N}-compact.
2. Every locally finite disjoint collection of nonempty open sets of X has cardinality $<\mathfrak{N}$.

Received by the editors May 6, 1970.

AMS 1969 subject classifications. Primary 5430; Secondary 5440, 5452, 5453.

Key words and phrases. Pseudo-\mathfrak{N}-compact space, pseudocompact space, paralindelöfian space, locally finite open (resp. closed) covering, Hilbert space $l_2(\mathfrak{U})$, one-point compactification, one-point pseudo-\mathfrak{N}-compactification, products.

Copyright © 1971, American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(3) Every locally finite closed covering of X has a subcovering of cardinality $< \aleph$.

(4) Every locally finite open covering \mathcal{U} of X has a subcollection \mathcal{V} such that $\text{Card}(\mathcal{V}) < \aleph$ and $X = \bigcup_{V \in \mathcal{V}} V$.

Proof. (1) \rightarrow (2). Let \mathcal{U} be a locally finite disjoint collection of non-empty open sets of X. In each $U \subseteq \mathcal{U}$ choose a point x_U. Since X is uniformizable, for every $U \subseteq \mathcal{U}$ there is a continuous map $f_U : X \rightarrow [0,1]$ which is 1 on x_U and 0 on $X \setminus U$. Let $e_U = (y_V)_{V \in \mathcal{U}}$ be the element of the Hilbert space $l_2(\mathcal{U})$—see [3, Chapter ix, §8] for its definition—defined by $y_U = 1$ and $y_V = 0$ for $V \neq U$. Since \mathcal{U} is locally finite,

$$f(x) = \sum_{U \in \mathcal{U}} f_U(x) e_U$$

defines a continuous map $f : X \rightarrow l_2(\mathcal{U})$. Let μ be the fine uniformity of X. By a well-known theorem, [4, i.21], $f : \mu X \rightarrow l_2(\mathcal{U})$ is uniformly continuous. Therefore there is a uniform cover $\mathcal{V} \subseteq \mu$ such that

$$\text{diam}(f(V)) < 1/2 \quad (V \in \mathcal{V}).$$

By (1), \mathcal{V} has a uniform refinement \mathcal{W} of cardinality $< \aleph$. For every $U \subseteq \mathcal{W}$ there is $W_U \subseteq \mathcal{W}$ such that $x_U \subseteq W_U$. Let us show that $U' \neq U''$ implies $W_{U'} \neq W_{U''}$. For, $W_{U'} = W_{U''}$ implies $x_{U'}$ and $x_{U''} \subseteq W_{U'}$, so that

$$\|f(x_{U'}) - f(x_{U''})\| < 1/2.$$

But this is impossible since $U_0 \neq U$ implies $f_{U_0}(x_U) = 0$, so that $f(x_{U'}) = e_{U'}$, and $\|e_{U'} - e_{U''}\| = \sqrt{2}$. Hence $U \rightarrow W_U$ is a 1-1 map $\mathcal{U} \rightarrow \mathcal{W}$, so that $\text{Card} (\mathcal{U}) \leq \text{Card} (\mathcal{W}) < \aleph$.

(2) \rightarrow (3). Let $(C_\alpha)_{\alpha}$ be a locally finite closed covering of X. By [3, p. 177, Exercises 7 and 6], there is a disjoint family $(U_\alpha)_{\alpha}$ of open sets of X such that $U_\alpha \subseteq C_\alpha$ for every α, and $X = \bigcup_{\alpha} U_\alpha$. (We recall briefly the construction: Let \leq be a well-order for the indexing set. One may show inductively that

$$\{\text{Int}(C_\beta) \mid \beta \leq \alpha\} \cup \{C_\beta \mid \beta > \alpha\}$$

is a covering of X for every α. Consequently it is easily seen that the sets

$$U_\alpha = \text{Int}(C_\alpha) \setminus \bigcup_{\beta < \alpha} \text{Int}(C_\beta)$$

form the desired family.) Then obviously (3) follows from (2).

(3) \rightarrow (4). Because $\{U \mid U \subseteq \mathcal{U}\}$ is a locally finite closed covering of X.

(4) → (1). Let \(\mathcal{U} \) be a uniform cover of the fine uniformity \(\mu \) of \(X \). It follows from [4, i.14] that \(\mathcal{U} \) has a closed uniform refinement \(\mathcal{V} \). By [4, vii. 4 and i.19] or, alternatively, [2, §3], \(\mathcal{V} \) has an open locally finite uniform refinement \(\mathcal{W} \). By (4), there is \(\mathcal{W}_0 \subseteq \mathcal{W} \) such that \(X = \bigcup_{\mathcal{W}_0 \subseteq \mathcal{W}} \mathcal{W}_0 \) and \(\text{Card}(\mathcal{W}_0) < \aleph_1 \), so that \(\mathcal{U} \) has a refinement of cardinality \(< \aleph_1 \). Hence \(X \) is pseudo-\(\aleph_1 \)-compact by [4, ii.33]. q.e.d.

As pointed out by [1], the one-point compactification of a discrete uncountable space cannot have Souslin property, so that local finiteness cannot be relaxed in the above theorem. Since any uniform cover of the fine uniformity is refined by a \(\sigma \)-uniformly discrete covering by [2, §3] or, alternatively, [4, vii.4 and i.19], we may change "locally finite" with "discrete" in statement (2) of the theorem.

The following result is well known for pseudocompact spaces.

Corollary. If \(U \) is an open subset of a pseudo-\(\aleph_1 \)-compact space, then \(\overline{U} \) is pseudo-\(\aleph_1 \)-compact.

Proof. Let \((C_\alpha)_{\alpha \in A} \) be a closed covering of \(\overline{U} \) which is locally finite in the subspace \(\overline{U} \) of \(X \). Clearly \(\{ C_\alpha | \alpha \in A \} \cup \{ X \setminus U \} \) is a locally finite closed covering of \(X \), so that it has a subcovering of cardinality \(< \aleph_1 \) by the theorem. Therefore there is \(A' \subseteq A \) such that \(\text{Card}(A') < \aleph_1 \) and \(U \subseteq \bigcup_{\alpha \in A'} C_\alpha \). Since \((C_\alpha)_{\alpha} \) is locally finite and closed in \(\overline{U} \),

\[
\overline{U} \subseteq \bigcup_{\alpha \in A'} C_\alpha = \bigcup_{\alpha \in A'} C_\alpha.
\]

q.e.d.

Define \(X \) *locally pseudo-\(\aleph_1 \)-compact* iff \(X \) is uniformizable and every point of \(X \) has a neighborhood which is a pseudo-\(\aleph_1 \)-compact subspace of \(X \). From the preceding corollary it follows that in a locally pseudo-\(\aleph_1 \)-compact space every point has a neighborhood base made of pseudo-\(\aleph_1 \)-compact subspaces. Let \(X \) be a locally pseudo-\(\aleph_1 \)-compact space, \(\emptyset \) the collection of all its pseudo-\(\aleph_1 \)-compact subspaces, \(\emptyset \) a point not in \(X \), and \(Y = X \cup \{ \infty \} \). Let \(\tau_0 \) be the topology on \(Y \) having as basis

\[
\{ U \subseteq X | U \text{ is open}\} \cup \{ Y \setminus P | P \in \emptyset \}.
\]

Let \(\tau \) be the weak topology induced on \(Y \) by all continuous functions \((Y, \tau_0) \to R\). One can derive from the theorem that \((Y, \tau)\) is pseudo-\(\aleph_1 \)-compact. Moreover, \(id : X \to (Y, \tau) \) is a homeomorphism into. This space \((Y, \tau)\) may be looked at the one-point pseudo-\(\aleph_1 \)-compactification of \(X \). The key properties of one-point pseudo-\(\aleph_1 \)-compactifications are like those of one-point compactifications, with "pseudo-\(\aleph_1 \)-compact" in place of "compact".

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Finally, note that every open subset of an arbitrary product of uniformizable spaces, each with density character $\leq \aleph_\alpha$, is pseudo-$\aleph_\alpha+1$-compact. For, every uniform covering is realized by a continuous map into a metric space, and such a map may be factored (as one may check by repeating the proof of Gleason factorization theorem [4, vii.23]) as $g \circ \pi_c$ with π_c a countable projection and g continuous.

References

Istituto Matematico, Università di Pisa, 56100 Pisa, Italy