Inertial and bordism properties of spheres
HTML articles powered by AMS MathViewer
- by Allan Brender
- Proc. Amer. Math. Soc. 27 (1971), 209-212
- DOI: https://doi.org/10.1090/S0002-9939-1971-0267592-9
- PDF | Request permission
Abstract:
The $k$-connective bounding group ${\theta ^n}(k)$ and the $k$-connective inertial group ${I^n}(k)$ are defined as subgroups of ${\theta ^n}$, the group of smooth $n$-spheres, $n \geqq 7$. It is shown ${I^n}(k)$ is contained in ${\theta ^n}(k)$. Consequently, the image of the Milnor-Novikov pairing ${\tau _{n,k}}$ is contained in ${\theta ^{n + k}}(k)$ when $n \geqq k + 2$. It follows that ${\tau _{7,3}} = 0$.References
- D. W. Anderson, E. H. Brown Jr., and F. P. Peterson, The structure of the Spin cobordism ring, Ann. of Math. (2) 86 (1967), 271–298. MR 219077, DOI 10.2307/1970690
- E. H. Brown Jr. and B. Steer, A note on Stiefel manifolds, Amer. J. Math. 87 (1965), 215–217. MR 175137, DOI 10.2307/2373232
- G. Brumfiel, On the homotopy groups of $BPL$ and $PL/O$. II, Topology 8 (1969), 305–311. MR 248830, DOI 10.1016/0040-9383(69)90017-2
- R. De Sapio, Differential structures on a product of spheres. II, Ann. of Math. (2) 89 (1969), 305–313. MR 246307, DOI 10.2307/1970670
- Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504–537. MR 148075, DOI 10.1090/S0273-0979-2015-01504-1
- A. Kosiński, On the inertia group of $\pi$-manifolds, Amer. J. Math. 89 (1967), 227–248. MR 214085, DOI 10.2307/2373121
- Problems in differential and algebraic topology. Seattle Conference, 1963, Ann. of Math. (2) 81 (1965), 565–591. MR 182961, DOI 10.2307/1970402
- John W. Milnor, Remarks concerning spin manifolds, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 55–62. MR 0180978
- James R. Munkres, Concordance inertia groups, Advances in Math. 4 (1970), 224–235 (1970). MR 263085, DOI 10.1016/0001-8708(70)90024-1
- Robert E. Stong, Notes on cobordism theory, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. Mathematical notes. MR 0248858
- Itiro Tamura, Sur les sommes connexes de certaines variétés différentiables, C. R. Acad. Sci. Paris 255 (1962), 3104–3106 (French). MR 143221
- Itiro Tamura, $8$-manifolds admitting no differentiable structure, J. Math. Soc. Japan 13 (1961), 377–382. MR 143220, DOI 10.2969/jmsj/01340377
- C. T. C. Wall, Classification problems in differential topology. VI. Classification of $(s-1)$-connected $(2s+1)$-manifolds, Topology 6 (1967), 273–296. MR 216510, DOI 10.1016/0040-9383(67)90020-1
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 27 (1971), 209-212
- MSC: Primary 57.10
- DOI: https://doi.org/10.1090/S0002-9939-1971-0267592-9
- MathSciNet review: 0267592