IDEAL PRESERVING AUTOMORPHISMS OF POSTLIMINARY C^*-ALGEBRAS

GEORGE A. ELLIOTT

Abstract. E. C. Lance has shown that an automorphism of a separable postliminary C^*-algebra which preserves closed two-sided ideals is universally weakly inner. This note extends Lance's result to the nonseparable case.

1. Let A be a C^*-algebra, and let α be an automorphism of A. If π is a representation of A, α is weakly inner with respect to π if there exists an element U of the weak closure of $\pi(A)$ such that $\pi(\alpha(x)) = U\pi(x)U^*$ for all $x \in A$. Then necessarily UU^* is equal to U^*U and is the largest projection in the weak closure of $\pi(A)$; hence $\alpha(Ker \pi) = Ker \pi$. α is universally weakly inner if α is weakly inner with respect to every representation. This implies that $\alpha(J) = J$ for every closed two-sided ideal J of A.

Theorem. Suppose that A is a postliminary C^*-algebra ([1, §4]). Suppose that α is an automorphism of A such that $\alpha(J) = J$ for every closed two-sided ideal J of A. Then α is universally weakly inner.

With the additional hypothesis that A be separable, this result is due to E. C. Lance ([3, Theorem 2]). In [3] Lance used the measure theoretic decomposition of a multiplicity-free representation of a separable C^*-algebra into irreducible representations ([1, §8]). The technique that we shall use here is the topological decomposition of a postliminary C^*-algebra into elementary C^*-algebras ([1, §10]). This in general is only possible locally; that is, after passing to a (nonzero) closed two-sided ideal. Accordingly, we shall first prove a local result (Lemma 2) and then deduce Theorem 1 with the aid of Zorn's lemma.

2. Lemma. Let A and α be as in Theorem 1, and let $J \neq A$ be a closed two-sided ideal of A. Then there exists a closed two-sided ideal $J_0 \subset J$ such that the automorphism $x + J \mapsto \alpha(x) + J$ of J_0/J is universally weakly inner.
Proof. Passing to the quotient of A by J, we may suppose that $J = 0$.

Passing to a closed two-sided ideal of A, we may suppose that A is the C^*-algebra defined by the continuous field of elementary C^*-algebras $\mathcal{A} = \mathcal{A}(\mathcal{H})$ associated (as in [1, 10.7.2]), with a continuous field of nonzero Hilbert spaces \mathcal{H} on the locally compact Hausdorff space $T = \text{Prim } A$. (The existence of a suitable ideal follows from [1, 4.4.4, 4.5.4, 4.5.3, 10.5.8 and 10.7.7], referred to in that order.)

There exists a (unique) automorphism f of \mathcal{A} such that, for $x \in A$, $f(x) = \alpha(x)$. (First set $f' = (\alpha_i)_{i \in T}$, where, for each $i \in T$, α_i is the automorphism $x + t \mapsto \alpha(x) + t$ of A/t. Then f' is an automorphism of \mathcal{A}', the continuous field of C^*-algebras defined by A. By [1, 10.5.2] there is an isomorphism ϕ of \mathcal{A} onto \mathcal{A}' such that, for $x \in A$, $\phi(x) = (x + t)_{i \in T}$. Set $f = \phi^{-1} f'$.)

By [1, 10.7.9], there exists a nonempty open set $V \subset T$ such that $f|_V$ is defined by an automorphism g of $\mathcal{H}|_V$.

Set J_0 equal to the set of continuous fields with respect to \mathcal{A} which vanish outside V; J_0 is a nonzero closed two-sided ideal of A.

Choose some fixed bounded field of operators h on T such that $h|_V = g$. Then $hJ_0 \subset J_0$ and $J_0h \subset J_0$. (Suppose that $x \in J_0$. Since x is continuous with respect to \mathcal{A} and vanishes outside V, hx and xh are continuous and zero) at each point outside V. Also, since g is an automorphism of $\mathcal{H}|_V$, hx and xh are continuous at each point in V (see [1, 10.7.2]). Thus hx and xh are continuous at each point of T; therefore they are continuous with respect to \mathcal{A}.)

Thus J_0 is a closed two-sided ideal of the C^*-algebra of bounded fields of operators on T generated by J_0 and h. Moreover, if $x \in J_0$, then for each $i \in V$ we have: $(\alpha(x))(t) = (f(x))(t) = f(t)(x(t)) = g(t)x(t)g(t)* = h(t)x(t)h(t)* = h(t)xh(t)*$, whence $\alpha(x) = hxh*$.

It follows by [1, 2.10.4] that $\alpha|_{J_0}$ is universally weakly inner.

3. Proof of Theorem 1. Let π be a representation of A. Let $(E_i)_{i \in I}$ be a maximal family of mutually orthogonal nonzero central projections in the weak closure of $\pi(A)$ such that for each $i \in I$ there exists U_i in the weak closure of $\pi(A)$ with $\pi(\alpha(x))E_i = U_i\pi(x)U_i^*E_i$ for all $x \in A$. If $\sum_{i \in E} E_i$ is not the largest projection in the weak closure of $\pi(A)$, let π_0 denote the (nonzero) representation of A such that π_0 is the representation $x + \sum_{i \in E} E_i \mapsto \alpha(x) + \pi(\alpha(x))E_i$ of J_0. Applying Lemma 2 with $J = \text{Ker } \pi_0$ we get an ideal $J_0 \cap \text{Ker } \pi_0$ such that the automorphism $x + \text{Ker } \pi_0 \mapsto \alpha(x) + \text{Ker } \pi_0$ of $J_0/\text{Ker } \pi_0$ is universally weakly inner. Considering in particular the representation $x + \text{Ker } \pi_0 \mapsto \pi(\alpha(x))$ of $J_0/\text{Ker } \pi_0$, we get an element U_0 of the weak closure of $\pi_0(J_0)$ such that for all
$x \in J_0$, $\pi_0(\alpha(x)) = U_0\pi_0(x)U_0^*$. Letting E_0 denote the largest projection in the weak closure of $\pi_0(J_0)$, we have: $E_0 \neq 0$, E_0 is orthogonal to all E_i ($i \in I$), both E_0 and U_0 are in the weak closure of $\pi(A)$, E_0 is central, and $\pi(\alpha(x))E_0 = U_0\pi(x)U_0^*E_0$ for all $x \in J_0$. By [1, 1.7.2], there exists an increasing approximate identity $(u_k)_{k \in K}$ for J_0; then $(\alpha(u_k))_{k \in K}$ is also such; by [1, 2.2.10], $E_0 = \sup_k \pi_0(u_k) = \sup_k \pi_0(\alpha(u_k))$; hence, for any $x \in A$, in the sense of strong convergence: $\pi(\alpha(x))E_0 = \lim_k \pi(\alpha(u_k))\pi(\alpha(x))E_0 = \lim_k \pi(\alpha(u_kx))E_0 = \lim_k U_0\pi(u_kx)U_0^*E_0 = \lim_k U_0\pi(u_k)\pi(x)U_0^*E_0 = U_0\pi(x)U_0^*E_0$. This contradicts the maximality of $(E_i)_{i \in I}$; $\sum_{i \in I} E_i$ must therefore be the largest projection in the weak closure of $\pi(A)$. Setting $U = \sum_{i \in I} E_i U_i$, we have: U is in the weak closure of $\pi(A)$, and for all $x \in A$, $\pi(\alpha(x)) = U\pi(x)U^*$.

4. Problems. 4.1. If α is a universally weakly inner automorphism of a C^*-algebra must $\alpha(J) = J$ for every two-sided ideal J (not necessarily closed)?

4.2. In [3], Lance raised the question, if α is an automorphism of a C^*-algebra such that $\alpha(J) \subseteq J$ for every closed two-sided ideal J, must $\alpha(J) = J$ for every closed two-sided ideal J? He showed that this is true for a postliminary C^*-algebra ([3, Theorem 1]).

4.3. The enveloping von Neumann algebra of a postliminary C^*-algebra is discrete. An automorphism of a discrete von Neumann algebra which fixes each element of the centre is inner. Can these facts be used to give a different proof of Theorem 1?

4.4. The condition in Theorem 1 that A be postliminary is too strong, since, for example, Theorem 1 also holds for a discrete von Neumann algebra. However, Theorem 1 may fail to hold (e.g., [2, Example a]). Does Theorem 1 fail for every antiliminary C^*-algebra?

References

