Complex bordism of classifying spaces
HTML articles powered by AMS MathViewer
- by Peter S. Landweber
- Proc. Amer. Math. Soc. 27 (1971), 175-179
- DOI: https://doi.org/10.1090/S0002-9939-1971-0268885-1
- PDF | Request permission
Abstract:
It is shown that, for a finite group $G$, the Thom homomorphism maps the complex bordism $\Omega _\ast ^U({B_G})$ onto the homology ${H_\ast }({B_G};Z)$ of a classifying space for $G$ if and only if $G$ has periodic cohomology.References
- J. F. Adams, Lectures on generalised cohomology, Category Theory, Homology Theory and their Applications, III (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Three), Springer, Berlin, 1969, pp. 1–138. MR 0251716
- M. F. Atiyah, Characters and cohomology of finite groups, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 23–64. MR 148722 J. M. Boardman, Stable homotopy theory, University of Warwick, 1965 (preprint).
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR 0176478 —, The relation of cobordism to $K$-theories, Lecture Notes in Math., no. 28, Springer-Verlag, Berlin and New York, 1966. M R 35 #7344.
- P. E. Conner and Larry Smith, On the complex bordism of finite complexes, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 117–221. MR 267571
- Tammo tom Dieck, Bordism of $G$-manifolds and integrality theorems, Topology 9 (1970), 345–358. MR 266241, DOI 10.1016/0040-9383(70)90058-3
- Daniel Lehmann, Sur le bordisme équivariant, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A693–A695 (French). MR 261617
- Richard G. Swan, Minimal resolutions for finite groups, Topology 4 (1965), 193–208. MR 179234, DOI 10.1016/0040-9383(65)90064-9
- Richard G. Swan, Groups with no odd dimensional cohomology, J. Algebra 17 (1971), 401–403. MR 272873, DOI 10.1016/0021-8693(71)90021-4
- J. W. Vick, Pontryagin duality in $K$-theory, Proc. Amer. Math. Soc. 24 (1970), 611–616. MR 267577, DOI 10.1090/S0002-9939-1970-0267577-1
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 27 (1971), 175-179
- MSC: Primary 55.30
- DOI: https://doi.org/10.1090/S0002-9939-1971-0268885-1
- MathSciNet review: 0268885