Real zeros of a random sum of orthogonal polynomials
HTML articles powered by AMS MathViewer
- by Minaketan Das
- Proc. Amer. Math. Soc. 27 (1971), 147-153
- DOI: https://doi.org/10.1090/S0002-9939-1971-0268933-9
- PDF | Request permission
Abstract:
Let ${c_0},{c_1},{c_2}, \cdots$ be a sequence of normally distributed independent random variables with mathematical expectation zero and variance unity. Let $P_k^ \ast (x)(k = 0,1,2, \cdots )$ be the normalised Legendre polynomials orthogonal with respect to the interval $( - 1,1)$. It is proved that the average number of the zeros of ${c_0}P_0^ \ast (x) + {c_1}P_1^ \ast (x) + \cdots + {c_n}P_n^ \ast (x)$ in the same interval is asymptotically equal to ${(3)^{ - 1/2}}n$ when $n$ is large.References
- Minaketan Das, The average number of real zeros of a random trigonometric polynomial, Proc. Cambridge Philos. Soc. 64 (1968), 721–729. MR 233398, DOI 10.1017/s0305004100043425
- G. Sansone, Orthogonal functions, Pure and Applied Mathematics, Vol. IX, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1959. Revised English ed; Translated from the Italian by A. H. Diamond; with a foreword by E. Hille. MR 0103368
- Earl D. Rainville, Special functions, The Macmillan Company, New York, 1960. MR 0107725
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 27 (1971), 147-153
- MSC: Primary 60.20
- DOI: https://doi.org/10.1090/S0002-9939-1971-0268933-9
- MathSciNet review: 0268933