On the univalence of a certain integral
HTML articles powered by AMS MathViewer
- by E. P. Merkes and D. J. Wright
- Proc. Amer. Math. Soc. 27 (1971), 97-100
- DOI: https://doi.org/10.1090/S0002-9939-1971-0269825-1
- PDF | Request permission
Abstract:
We consider the function $g(z) = \smallint _0^z{[f(t)/t]^\alpha }dt$ for $f$ in the classes of convex, starlike, and close-to-convex univalent functions, and we determine precisely which values of $\alpha$ yield a close-to-convex function $g$.References
- W. M. Causey, The close-to-convexity and univalence of an integral, Math. Z. 99 (1967), 207–212. MR 215972, DOI 10.1007/BF01112451
- Wilfred Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169–185 (1953). MR 54711 A. Marx, Untersuchungen über schlichte Abbildungen, Math. Ann. 107 (1932), 40-67.
- Mamoru Nunokawa, On the univalence of a certain integral, Trans. Amer. Math. Soc. 146 (1969), 439–446. MR 251205, DOI 10.1090/S0002-9947-1969-0251205-1
- W. C. Royster, On the univalence of a certain integral, Michigan Math. J. 12 (1965), 385–387. MR 183866
- K\B{o}ichi Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72–75. MR 107005, DOI 10.2969/jmsj/01110072
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 27 (1971), 97-100
- MSC: Primary 30.42
- DOI: https://doi.org/10.1090/S0002-9939-1971-0269825-1
- MathSciNet review: 0269825